Suppr超能文献

基于护理记录的深度学习神经网络预测出院后死亡率。

A nursing note-aware deep neural network for predicting mortality risk after hospital discharge.

机构信息

Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei, Taiwan; Department of Nursing, National Taiwan University Cancer Center, Taipei, Taiwan.

Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei, Taiwan.

出版信息

Int J Nurs Stud. 2024 Aug;156:104797. doi: 10.1016/j.ijnurstu.2024.104797. Epub 2024 May 9.

Abstract

BACKGROUND

ICU readmissions and post-discharge mortality pose significant challenges. Previous studies used EHRs and machine learning models, but mostly focused on structured data. Nursing records contain crucial unstructured information, but their utilization is challenging. Natural language processing (NLP) can extract structured features from clinical text. This study proposes the Crucial Nursing Description Extractor (CNDE) to predict post-ICU discharge mortality rates and identify high-risk patients for unplanned readmission by analyzing electronic nursing records.

OBJECTIVE

Developed a deep neural network (NurnaNet) with the ability to perceive nursing records, combined with a bio-clinical medicine pre-trained language model (BioClinicalBERT) to analyze the electronic health records (EHRs) in the MIMIC III dataset to predict the death of patients within six month and two year risk.

DESIGN

A cohort and system development design was used.

SETTING(S): Based on data extracted from MIMIC-III, a database of critically ill in the US between 2001 and 2012, the results were analyzed.

PARTICIPANTS

We calculated patients' age using admission time and date of birth information from the MIMIC dataset. Patients under 18 or over 89 years old, or who died in the hospital, were excluded. We analyzed 16,973 nursing records from patients' ICU stays.

METHODS

We have developed a technology called the Crucial Nursing Description Extractor (CNDE), which extracts key content from text. We use the logarithmic likelihood ratio to extract keywords and combine BioClinicalBERT. We predict the survival of discharged patients after six months and two years and evaluate the performance of the model using precision, recall, the F-score, the receiver operating characteristic curve (ROC curve), the area under the curve (AUC), and the precision-recall curve (PR curve).

RESULTS

The research findings indicate that NurnaNet achieved good F-scores (0.67030, 0.70874) within six months and two years. Compared to using BioClinicalBERT alone, there was an improvement in performance of 2.05 % and 1.08 % for predictions within six months and two years, respectively.

CONCLUSIONS

CNDE can effectively reduce long-form records and extract key content. NurnaNet has a good F-score in analyzing the data of nursing records, which helps to identify the risk of death of patients after leaving the hospital and adjust the regular follow-up and treatment plan of relevant medical care as soon as possible.

摘要

背景

ICU 再入院和出院后死亡率是重大挑战。既往研究采用电子健康记录(EHR)和机器学习模型,但主要集中于结构化数据。护理记录包含关键的非结构化信息,但利用具有挑战性。自然语言处理(NLP)可以从临床文本中提取结构化特征。本研究提出 Crucial Nursing Description Extractor(CNDE),通过分析 MIMIC III 数据集的电子护理记录,预测 ICU 出院后死亡率,并识别再入院的高危患者。

目的

开发一种能够感知护理记录的深度神经网络(NurnaNet),结合生物临床医学预训练语言模型(BioClinicalBERT),分析 MIMIC III 数据集的电子健康记录(EHR),预测患者在 6 个月和 2 年内死亡的风险。

设计

采用队列和系统开发设计。

设置

基于 2001 年至 2012 年美国重症监护的 MIMIC-III 数据库提取的数据进行分析。

参与者

我们使用 MIMIC 数据集的入院时间和出生日期信息计算患者年龄。排除年龄小于 18 岁或大于 89 岁、或在医院死亡的患者。我们分析了 16973 例 ICU 住院患者的护理记录。

方法

我们开发了一种名为 Crucial Nursing Description Extractor(CNDE)的技术,从文本中提取关键内容。我们使用对数似然比提取关键词,并结合 BioClinicalBERT。我们预测出院患者在 6 个月和 2 年内的生存情况,并使用精确率、召回率、F 分数、接收者操作特征曲线(ROC 曲线)、曲线下面积(AUC)和精度-召回曲线(PR 曲线)评估模型性能。

结果

研究结果表明,NurnaNet 在 6 个月和 2 年内的 F 分数均达到较好水平(0.67030、0.70874)。与单独使用 BioClinicalBERT 相比,6 个月和 2 年内的预测性能分别提高了 2.05%和 1.08%。

结论

CNDE 可以有效地减少长格式记录并提取关键内容。NurnaNet 在分析护理记录数据方面具有良好的 F 分数,有助于识别患者出院后死亡的风险,并尽快调整相关医疗保健的常规随访和治疗计划。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验