Perer Adam, Sun Jimeng
IBM T.J. Watson Research Center, Hawthorne, NY, USA.
AMIA Annu Symp Proc. 2012;2012:716-25. Epub 2012 Nov 3.
To develop a visual analytic system to help medical professionals improve disease diagnosis by providing insights for understanding disease progression.
We develop MatrixFlow, a visual analytic system that takes clinical event sequences of patients as input, constructs time-evolving networks and visualizes them as a temporal flow of matrices. MatrixFlow provides several interactive features for analysis: 1) one can sort the events based on the similarity in order to accentuate underlying cluster patterns among those events; 2) one can compare co-occurrence events over time and across cohorts through additional line graph visualization.
MatrixFlow is applied to visualize heart failure (HF) symptom events extracted from a large cohort of HF cases and controls (n=50,625), which allows medical experts to reach insights involving temporal patterns and clusters of interest, and compare cohorts in novel ways that may lead to improved disease diagnoses.
MatrixFlow is an interactive visual analytic system that allows users to quickly discover patterns in clinical event sequences. By unearthing the patterns hidden within and displaying them to medical experts, users become empowered to make decisions influenced by historical patterns.
开发一种可视化分析系统,通过提供有助于理解疾病进展的见解,帮助医学专业人员改善疾病诊断。
我们开发了MatrixFlow,这是一种可视化分析系统,它将患者的临床事件序列作为输入,构建随时间演变的网络,并将其可视化为矩阵的时间流。MatrixFlow提供了几种用于分析的交互功能:1)可以根据相似性对事件进行排序,以突出这些事件之间潜在的聚类模式;2)可以通过额外的折线图可视化,随时间和跨队列比较共现事件。
MatrixFlow应用于可视化从大量心力衰竭(HF)病例和对照(n = 50,625)中提取的HF症状事件,这使医学专家能够获得涉及时间模式和感兴趣聚类的见解,并以可能导致改善疾病诊断的新方式比较队列。
MatrixFlow是一种交互式可视化分析系统,允许用户快速发现临床事件序列中的模式。通过挖掘隐藏在其中的模式并将其展示给医学专家,用户能够做出受历史模式影响的决策。