AXYS Analytical Services Ltd., 2045 Mills Road West, Sidney, British Columbia, Canada.
Environ Sci Technol. 2013 Feb 5;47(3):1381-9. doi: 10.1021/es304336r. Epub 2013 Jan 24.
Investigations into the biodegradation potential of perfluorooctane sulfonate (PFOS)-precursor candidates have focused on low molecular weight substances (e.g., N-ethyl perfluorooctane sulfonamido ethanol (EtFOSE)) in wastewater treatment plant sludge. Few data are available on PFOS-precursor biodegradation in other environmental compartments, and nothing is known about the stability of high-molecular-weight perfluorooctane sulfonamide-based substances such as the EtFOSE-based phosphate diester (SAmPAP diester) in any environmental compartment. In the present work, the biodegradation potential of SAmPAP diester and EtFOSE by bacteria in marine sediments was evaluated over 120 days at 4 and 25 °C. At both temperatures, EtFOSE was transformed to a suite of products, including N-ethyl perfluorooctane sulfonamidoacetate, perfluorooctane sulfonamidoacetate, N-ethyl perfluorooctane sulfonamide, perfluorooctane sulfonamide, and perfluorooctane sulfonate. Transformation was significantly more rapid at 25 °C (t(1/2) = 44 ± 3.4 days; error represents standard error of the mean (SEM)) compared to 4 °C (t(1/2) = 160 ± 17 days), but much longer than previous biodegradation studies involving EtFOSE in sludge (t(1/2) ∼0.7-4.2 days). In contrast, SAmPAP diester was highly recalcitrant to microbial degradation, with negligible loss and/or associated product formation observed after 120 days at both temperatures, and an estimated half-life of >380 days at 25 °C (estimated using the lower bounds 95% confidence interval of the slope). We hypothesize that the hydrophobicity of SAmPAP diester reduces its bioavailability, thus limiting biotransformation by bacteria in sediments. The lengthy biodegradation half-life of EtFOSE and recalcitrant nature of SAmPAP diester in part explains the elevated concentrations of PFOS-precursors observed in urban marine sediments from Canada, Japan, and the U.S, over a decade after phase-out of their production and commercial application in these countries.
针对全氟辛烷磺酸 (PFOS)-前体候选物的生物降解潜力的研究主要集中在污水处理厂污泥中的低分子量物质(例如,N-乙基全氟辛烷磺酰胺基乙醇(EtFOSE))。关于其他环境介质中 PFOS-前体生物降解的资料很少,并且对于在任何环境介质中基于高相对分子质量全氟辛烷磺酰胺的物质(例如基于 EtFOSE 的磷酸二酯(SAmPAP 二酯))的稳定性,人们一无所知。在本工作中,评估了在 4 和 25°C 下,海洋沉积物中的细菌对 SAmPAP 二酯和 EtFOSE 的生物降解潜力,为期 120 天。在这两种温度下,EtFOSE 都转化为一系列产物,包括 N-乙基全氟辛烷磺酰胺基乙酸酯、全氟辛烷磺酰胺基乙酸酯、N-乙基全氟辛烷磺酰胺、全氟辛烷磺酰胺和全氟辛烷磺酸。在 25°C 时的转化速度明显更快(t(1/2)=44±3.4 天;误差表示平均值的标准误差(SEM)),而在 4°C 时(t(1/2)=160±17 天)的转化速度则要慢得多,但比以前涉及污泥中 EtFOSE 的生物降解研究长得多(t(1/2)∼0.7-4.2 天)。相比之下,SAmPAP 二酯对微生物降解具有很强的抗降解性,在两种温度下 120 天后几乎没有损失和/或相关产物形成,在 25°C 时的半衰期估计超过 380 天(使用斜率的 95%置信区间下限进行估算)。我们假设 SAmPAP 二酯的疏水性降低了其生物利用度,从而限制了沉积物中细菌的生物转化。EtFOSE 的生物降解半衰期长和 SAmPAP 二酯的抗降解性在一定程度上解释了在这些国家停止生产和商业应用十多年后,在加拿大、日本和美国的城市海洋沉积物中仍观察到高浓度的 PFOS-前体的原因。