Department of Immunotechnology, Lund University, BMC D13, 22184 Lund, Sweden.
Mol Cell Proteomics. 2013 May;12(5):1407-20. doi: 10.1074/mcp.O112.021907. Epub 2013 Jan 9.
Label-free quantification using precursor-based intensities is a versatile workflow for large-scale proteomics studies. The method however requires extensive computational analysis and is therefore in need of robust quality control during the data mining stage. We present a new label-free data analysis workflow integrated into a multiuser software platform. A novel adaptive alignment algorithm has been developed to minimize the possible systematic bias introduced into the analysis. Parameters are estimated on the fly from the data at hand, producing a user-friendly analysis suite. Quality metrics are output in every step of the analysis as well as actively incorporated into the parameter estimation. We furthermore show the improvement of this system by comprehensive comparison to classical label-free analysis methodology as well as current state-of-the-art software.
基于前体强度的无标记定量是一种用于大规模蛋白质组学研究的通用工作流程。然而,该方法需要广泛的计算分析,因此在数据挖掘阶段需要稳健的质量控制。我们提出了一种新的无标记数据分析工作流程,该流程集成到一个多用户软件平台中。开发了一种新的自适应对齐算法,以最小化分析中可能引入的系统偏差。参数是从手头的数据实时估计的,生成一个用户友好的分析套件。质量指标在分析的每一步输出,并积极纳入参数估计。此外,我们通过与经典无标记分析方法以及当前最先进的软件的全面比较,展示了该系统的改进。