Suppr超能文献

生物过程的自动控制。

Automatic control of bioprocesses.

机构信息

Process Analytics and Cereal Technology, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 23, 70599, Stuttgart, Germany.

出版信息

Adv Biochem Eng Biotechnol. 2013;132:35-63. doi: 10.1007/10_2012_167.

Abstract

In this chapter, different approaches for open-loop and closed-loop control applied in bioprocess automation are discussed. Although in recent years many contributions dealing with closed-loop control have been published, only a minority were actually applied in real bioprocesses, the majority being simulations. As a result of the diversity of bioprocess requirements, a single control algorithm cannot be applied in all cases; rather, different approaches are necessary. Most publications combine different closed-loop control techniques to construct hybrid systems. These systems are supposed to combine the advantages of each approach into a well-performing control strategy. The majority of applications are soft sensors in combination with a proportional-integral-derivative (PID) controller. The fact that soft sensors have become this importance for control purposes demonstrates the lack of direct measurements or their large additional expense for robust and reliable online measurement systems. The importance of model predictive control is increasing; however, reliable and robust process models are required, as well as very powerful computers to address the computational needs. The lack of theoretical bioprocess models is compensated by hybrid systems combining theoretical models, fuzzy logic, and/or artificial neural network methodology. Although many authors suggest a possible transfer of their presented control application to other bioprocesses, the algorithms are mostly specialized to certain organisms or certain cultivation conditions as well as to a specific measurement system.

摘要

在本章中,讨论了应用于生物过程自动化的开环和闭环控制的不同方法。尽管近年来已经发表了许多关于闭环控制的贡献,但实际上只有少数应用于实际的生物过程,大多数都是模拟。由于生物过程的要求多样化,单一的控制算法不能应用于所有情况;相反,需要不同的方法。大多数出版物将不同的闭环控制技术结合起来构建混合系统。这些系统旨在将每种方法的优势结合到一个性能良好的控制策略中。大多数应用是软传感器与比例积分微分(PID)控制器的结合。软传感器在控制目的方面变得如此重要,这表明直接测量的缺乏或其对稳健和可靠的在线测量系统的大量额外费用。模型预测控制的重要性正在增加;然而,需要可靠和鲁棒的过程模型,以及非常强大的计算机来满足计算需求。缺乏理论生物过程模型通过结合理论模型、模糊逻辑和/或人工神经网络方法的混合系统来弥补。尽管许多作者建议将他们提出的控制应用转移到其他生物过程中,但这些算法大多专门针对特定的生物体或特定的培养条件以及特定的测量系统。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验