Suppr超能文献

D 分数:一个与搜索引擎无关的 MD 分数。

D-score: a search engine independent MD-score.

机构信息

Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany.

出版信息

Proteomics. 2013 Mar;13(6):1036-41. doi: 10.1002/pmic.201200408. Epub 2013 Feb 15.

Abstract

While peptides carrying PTMs are routinely identified in gel-free MS, the localization of the PTMs onto the peptide sequences remains challenging. Search engine scores of secondary peptide matches have been used in different approaches in order to infer the quality of site inference, by penalizing the localization whenever the search engine similarly scored two candidate peptides with different site assignments. In the present work, we show how the estimation of posterior error probabilities for peptide candidates allows the estimation of a PTM score called the D-score, for multiple search engine studies. We demonstrate the applicability of this score to three popular search engines: Mascot, OMSSA, and X!Tandem, and evaluate its performance using an already published high resolution data set of synthetic phosphopeptides. For those peptides with phosphorylation site inference uncertainty, the number of spectrum matches with correctly localized phosphorylation increased by up to 25.7% when compared to using Mascot alone, although the actual increase depended on the fragmentation method used. Since this method relies only on search engine scores, it can be readily applied to the scoring of the localization of virtually any modification at no additional experimental or in silico cost.

摘要

虽然在无胶 MS 中常规地鉴定了携带 PTM 的肽,但将 PTM 定位到肽序列仍然具有挑战性。已经在不同的方法中使用了二级肽匹配的搜索引擎得分,以便通过在搜索引擎对具有不同位置分配的两个候选肽进行相似评分时,对位置推断的质量进行惩罚。在本工作中,我们展示了如何估计肽候选物的后验误差概率,从而可以为多个搜索引擎研究估计称为 D 分数的 PTM 分数。我们展示了该分数在三种流行的搜索引擎(Mascot、OMSSA 和 X!Tandem)中的适用性,并使用已发表的高分辨率合成磷酸肽数据集评估了其性能。对于那些磷酸化位点推断不确定的肽,与单独使用 Mascot 相比,正确定位磷酸化的谱匹配数量最多增加了 25.7%,尽管实际增加取决于所使用的碎裂方法。由于该方法仅依赖于搜索引擎得分,因此可以毫不费力地应用于几乎任何修饰的定位评分,而无需额外的实验或计算成本。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验