Suppr超能文献

LuciPHOr:一种使用改进的靶标-诱饵方法进行磷酸化位点定位和假定位率估计的算法。

LuciPHOr: algorithm for phosphorylation site localization with false localization rate estimation using modified target-decoy approach.

机构信息

Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109;

出版信息

Mol Cell Proteomics. 2013 Nov;12(11):3409-19. doi: 10.1074/mcp.M113.028928. Epub 2013 Aug 5.

Abstract

The localization of phosphorylation sites in peptide sequences is a challenging problem in large-scale phosphoproteomics analysis. The intense neutral loss peaks and the coexistence of multiple serine/threonine and/or tyrosine residues are limiting factors for objectively scoring site patterns across thousands of peptides. Various computational approaches for phosphorylation site localization have been proposed, including Ascore, Mascot Delta score, and ProteinProspector, yet few address direct estimation of the false localization rate (FLR) in each experiment. Here we propose LuciPHOr, a modified target-decoy-based approach that uses mass accuracy and peak intensities for site localization scoring and FLR estimation. Accurate estimation of the FLR is a difficult task at the individual-site level because the degree of uncertainty in localization varies significantly across different peptides. LuciPHOr carries out simultaneous localization on all candidate sites in each peptide and estimates the FLR based on the target-decoy framework, where decoy phosphopeptides generated by placing artificial phosphorylation(s) on non-candidate residues compete with the non-decoy phosphopeptides. LuciPHOr also reports approximate site-level confidence scores for all candidate sites as a means to localize additional sites from multiphosphorylated peptides in which localization can be partially achieved. Unlike the existing tools, LuciPHOr is compatible with any search engine output processed through the Trans-Proteomic Pipeline. We evaluated the performance of LuciPHOr in terms of the sensitivity and accuracy of FLR estimates using two synthetic phosphopeptide libraries and a phosphoproteomic dataset generated from complex mouse brain samples.

摘要

磷酸化肽序列中磷酸化位点的定位是大规模磷酸蛋白质组学分析中的一个难题。强烈的中性丢失峰和多个丝氨酸/苏氨酸和/或酪氨酸残基的共存是客观评分数千个肽中位点模式的限制因素。已经提出了各种用于磷酸化位点定位的计算方法,包括 Ascore、Mascot Delta score 和 ProteinProspector,但很少有方法直接估计每个实验中的错误定位率 (FLR)。在这里,我们提出了 LuciPHOr,这是一种基于目标诱饵的改进方法,用于对位点定位评分和 FLR 估计使用质量精度和峰强度。在个体水平上准确估计 FLR 是一项具有挑战性的任务,因为定位的不确定性程度在不同的肽之间差异很大。LuciPHOr 对每个肽中的所有候选位点进行同时定位,并根据目标诱饵框架估计 FLR,其中通过在非候选残基上放置人工磷酸化来生成诱饵磷酸肽与非诱饵磷酸肽竞争。LuciPHOr 还为所有候选位点报告近似的位点级置信得分,作为从部分定位的多磷酸化肽中定位其他位点的一种手段。与现有工具不同,LuciPHOr 与通过 Trans-Proteomic Pipeline 处理的任何搜索引擎输出兼容。我们使用两个合成磷酸肽文库和从复杂的老鼠脑样本生成的磷酸蛋白质组数据集来评估 LuciPHOr 在 FLR 估计的灵敏度和准确性方面的性能。

相似文献

2
Confident phosphorylation site localization using the Mascot Delta Score.利用 Mascot Delta Score 进行自信的磷酸化位点定位。
Mol Cell Proteomics. 2011 Feb;10(2):M110.003830. doi: 10.1074/mcp.M110.003830. Epub 2010 Nov 6.
6
Confident site localization using a simulated phosphopeptide spectral library.使用模拟磷酸肽光谱库进行可靠的位点定位
J Proteome Res. 2015 May 1;14(5):2348-59. doi: 10.1021/acs.jproteome.5b00050. Epub 2015 Mar 27.
8
Accurate phosphorylation site localization using phospho-brackets.使用磷酸化括号进行精确的磷酸化位点定位。
Anal Chim Acta. 2017 Dec 15;996:38-47. doi: 10.1016/j.aca.2017.09.043. Epub 2017 Oct 17.

引用本文的文献

4
Computational approaches to identify sites of phosphorylation.计算方法鉴定磷酸化位点。
Proteomics. 2024 Apr;24(8):e2300088. doi: 10.1002/pmic.202300088. Epub 2023 Dec 24.

本文引用的文献

4
Modification site localization scoring: strategies and performance.修饰位点定位评分:策略与性能。
Mol Cell Proteomics. 2012 May;11(5):3-14. doi: 10.1074/mcp.R111.015305. Epub 2012 Feb 11.
8
Modification site localization scoring integrated into a search engine.修改部位定位评分集成到搜索引擎中。
Mol Cell Proteomics. 2011 Jul;10(7):M111.008078. doi: 10.1074/mcp.M111.008078. Epub 2011 Apr 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验