Suppr超能文献

TimeSeer:高维时间序列的 Scagnostics。

TimeSeer: Scagnostics for high-dimensional time series.

机构信息

Department of Computer Science, University of Illinois at Chicago, Chicago, IL 60630, USA.

出版信息

IEEE Trans Vis Comput Graph. 2013 Mar;19(3):470-83. doi: 10.1109/TVCG.2012.128.

Abstract

We introduce a method (Scagnostic time series) and an application (TimeSeer) for organizing multivariate time series and for guiding interactive exploration through high-dimensional data. The method is based on nine characterizations of the 2D distributions of orthogonal pairwise projections on a set of points in multidimensional euclidean space. These characterizations include measures, such as, density, skewness, shape, outliers, and texture. Working directly with these Scagnostic measures, we can locate anomalous or interesting subseries for further analysis. Our application is designed to handle the types of doubly multivariate data series that are often found in security, financial, social, and other sectors.

摘要

我们介绍了一种组织多元时间序列并通过高维数据指导交互式探索的方法(Scagnostic 时间序列)和应用程序(TimeSeer)。该方法基于在多维欧几里得空间中的点集上的正交成对投影的 2D 分布的九个特征。这些特征包括密度、偏度、形状、异常值和纹理等度量。直接使用这些 Scagnostic 度量,我们可以定位异常或有趣的子序列以进行进一步分析。我们的应用程序旨在处理在安全、金融、社交和其他领域中经常发现的那种双重多元数据系列。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验