Suppr超能文献

检测肺部细菌感染:体外挥发性指纹图谱的体内评估。

Detecting bacterial lung infections: in vivo evaluation of in vitro volatile fingerprints.

机构信息

School of Engineering, University of Vermont, Burlington, VT 05405, USA.

出版信息

J Breath Res. 2013 Mar;7(1):016003. doi: 10.1088/1752-7155/7/1/016003. Epub 2013 Jan 10.

Abstract

The identification of bacteria by their volatilomes is of interest to many scientists and clinicians as it holds the promise of diagnosing infections in situ, particularly lung infections via breath analysis. While there are many studies reporting various bacterial volatile biomarkers or fingerprints using in vitro experiments, it has proven difficult to translate these data to in vivo breath analyses. Therefore, we aimed to create secondary electrospray ionization-mass spectrometry (SESI-MS) pathogen fingerprints directly from the breath of mice with lung infections. In this study we demonstrated that SESI-MS is capable of differentiating infected versus uninfected mice, P. aeruginosa-infected versus S. aureus-infected mice, as well as distinguish between infections caused by P. aeruginosa strains PAO1 versus FRD1, with statistical significance (p < 0.05). In addition, we compared in vitro and in vivo volatiles and observed that only 25-34% of peaks are shared between the in vitro and in vivo SESI-MS fingerprints. To the best of our knowledge, these are the first breath volatiles measured for P. aeruginosa PAO1, FRD1, and S. aureus RN450, and the first comparison of in vivo and in vitro volatile profiles from the same strains using the murine infection model.

摘要

通过其挥发物组学来鉴定细菌引起了许多科学家和临床医生的兴趣,因为它有望在原位诊断感染,特别是通过呼吸分析诊断肺部感染。虽然有许多研究报告了使用体外实验的各种细菌挥发性生物标志物或指纹,但将这些数据转化为体内呼吸分析一直具有挑战性。因此,我们旨在直接从肺部感染的小鼠的呼吸中创建二次电喷雾电离 - 质谱(SESI-MS)病原体指纹。在这项研究中,我们证明了 SESI-MS 能够区分感染与未感染的小鼠、铜绿假单胞菌感染与金黄色葡萄球菌感染的小鼠,以及区分 PAO1 与 FRD1 引起的感染,具有统计学意义(p < 0.05)。此外,我们比较了体外和体内的挥发性物质,观察到只有 25-34%的峰在体外和体内 SESI-MS 指纹之间共享。据我们所知,这些是首次测量铜绿假单胞菌 PAO1、FRD1 和金黄色葡萄球菌 RN450 的呼吸挥发性物质,也是首次使用小鼠感染模型比较相同菌株的体内和体外挥发性谱。

相似文献

1
Detecting bacterial lung infections: in vivo evaluation of in vitro volatile fingerprints.
J Breath Res. 2013 Mar;7(1):016003. doi: 10.1088/1752-7155/7/1/016003. Epub 2013 Jan 10.
3
Breathprints of model murine bacterial lung infections are linked with immune response.
Eur Respir J. 2015 Jan;45(1):181-90. doi: 10.1183/09031936.00015814. Epub 2014 Oct 16.
6
Secondary electrospray ionization-mass spectrometry (SESI-MS) breathprinting of multiple bacterial lung pathogens, a mouse model study.
J Appl Physiol (1985). 2013 Jun;114(11):1544-9. doi: 10.1152/japplphysiol.00099.2013. Epub 2013 Mar 21.
8
Breath metabolome of mice infected with Pseudomonas aeruginosa.
Metabolomics. 2019 Jan 7;15(1):10. doi: 10.1007/s11306-018-1461-6.

引用本文的文献

1
-derived metabolites and volatile organic compounds: impact on lung epithelial homeostasis and mucosal immune response.
Front Immunol. 2025 Jun 9;16:1553013. doi: 10.3389/fimmu.2025.1553013. eCollection 2025.
2
Early detection of bacterial pneumonia by characteristic induced odor signatures.
BMC Infect Dis. 2024 Dec 27;24(1):1467. doi: 10.1186/s12879-024-10371-7.
3
Bioreactor contamination monitoring using off-gassed volatile organic compounds (VOCs).
Anal Bioanal Chem. 2025 Mar;417(6):1165-1176. doi: 10.1007/s00216-024-05720-z. Epub 2024 Dec 26.
4
Biodetection of an odor signature in white-tailed deer associated with infection by chronic wasting disease prions.
PLoS One. 2024 Aug 7;19(8):e0303225. doi: 10.1371/journal.pone.0303225. eCollection 2024.
5
Fulfilling the Promise of Breathomics: Considerations for the Discovery and Validation of Exhaled Volatile Biomarkers.
Am J Respir Crit Care Med. 2024 Nov 1;210(9):1079-1090. doi: 10.1164/rccm.202305-0868TR.
6
Dogs can detect an odor profile associated with biofilms in cultures and biological samples.
Front Allergy. 2024 Feb 13;5:1275397. doi: 10.3389/falgy.2024.1275397. eCollection 2024.
7
Volatile organic compounds in headspace characterize isolated bacterial strains independent of growth medium or antibiotic sensitivity.
PLoS One. 2024 Jan 26;19(1):e0297086. doi: 10.1371/journal.pone.0297086. eCollection 2024.
8
Identification of a marker of infection in the breath using a porcine pneumonia model.
JTCVS Open. 2023 Oct 30;16:1063-1069. doi: 10.1016/j.xjon.2023.10.025. eCollection 2023 Dec.

本文引用的文献

1
GC-Based Techniques for Breath Analysis: Current Status, Challenges, and Prospects.
Crit Rev Anal Chem. 2016 Jul 3;46(4):291-304. doi: 10.1080/10408347.2015.1055550. Epub 2015 Nov 3.
2
An investigation of suitable bag materials for the collection and storage of breath samples containing hydrogen cyanide.
J Breath Res. 2012 Sep;6(3):036004. doi: 10.1088/1752-7155/6/3/036004. Epub 2012 Jul 4.
3
Bacterial volatile discovery using solid phase microextraction and comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry.
J Chromatogr B Analyt Technol Biomed Life Sci. 2012 Jul 15;901:41-6. doi: 10.1016/j.jchromb.2012.05.038. Epub 2012 Jun 7.
4
Variability in the concentrations of volatile metabolites emitted by genotypically different strains of Pseudomonas aeruginosa.
J Appl Microbiol. 2012 Sep;113(3):701-13. doi: 10.1111/j.1365-2672.2012.05370.x. Epub 2012 Jul 24.
6
Microbial volatile compounds in health and disease conditions.
J Breath Res. 2012 Jun;6(2):024001. doi: 10.1088/1752-7155/6/2/024001. Epub 2012 May 4.
7
Developments in novel breath tests for bacterial and fungal pulmonary infection.
Curr Opin Pulm Med. 2012 May;18(3):228-32. doi: 10.1097/MCP.0b013e328351f98b.
8
Advances in electronic-nose technologies developed for biomedical applications.
Sensors (Basel). 2011;11(1):1105-76. doi: 10.3390/s110101105. Epub 2011 Jan 19.
9
Ion mobility spectrometry for microbial volatile organic compounds: a new identification tool for human pathogenic bacteria.
Appl Microbiol Biotechnol. 2012 Mar;93(6):2603-14. doi: 10.1007/s00253-012-3924-4. Epub 2012 Feb 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验