Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Delhi, India.
PLoS One. 2013;8(1):e53522. doi: 10.1371/journal.pone.0053522. Epub 2013 Jan 7.
Genome-wide association studies (GWASs) have discovered association of several loci with Type 2 diabetes (T2D), a common complex disease characterized by impaired insulin secretion by pancreatic β cells and insulin signaling in target tissues. However, effect of genetic risk variants on continuous glycemic measures in nondiabetic subjects mainly elucidates perturbation of insulin secretion. Also, the disease associated genes do not clearly converge on functional categories consistent with the known aspects of T2D pathophysiology. We used a systems biology approach to unravel genome to phenome correlation in T2D. We first examined enrichment of pathways in genes identified in T2D GWASs at genome-wide or lower levels of significance. Genes at lower significance threshold showed enrichment of insulin secretion related pathway. Notably, physical and genetic interaction network of these genes showed robust enrichment of insulin signaling and other T2D pathophysiology related pathways including insulin secretion. The network also overrepresented genes reported to interact with insulin secretion and insulin action targeting antidiabetic drugs. The drug interacting genes themselves showed overrepresentation of insulin signaling and other T2D relevant pathways. Next, we generated genome-wide expression profiles of multiple insulin responsive tissues from nondiabetic and diabetic patients. Remarkably, the differentially expressed genes showed significant overlap with the network genes, with the intersection showing enrichment of insulin signaling and other pathways consistent with T2D pathophysiology. Literature search led our genomic, interactomic, transcriptomic and toxicogenomic evidence to converge on TGF-beta signaling, a pathway known to play a crucial role in pancreatic islets development and function, and insulin signaling. Cumulatively, we find that GWAS genes relate directly to insulin secretion and indirectly, through collaborating with other genes, to insulin resistance. This seems to support the epidemiological evidence that environmentally triggered insulin resistance interacts with genetically programmed β cell dysfunction to precipitate diabetes.
全基因组关联研究(GWAS)发现了几个与 2 型糖尿病(T2D)相关的基因位点,T2D 是一种常见的复杂疾病,其特征是胰腺β细胞胰岛素分泌受损和靶组织胰岛素信号转导受损。然而,遗传风险变异对非糖尿病个体连续血糖测量的影响主要阐明了胰岛素分泌的紊乱。此外,与疾病相关的基因并没有明显集中在与 T2D 病理生理学已知方面一致的功能类别上。我们使用系统生物学方法来揭示 T2D 中的基因组与表型相关性。我们首先研究了在全基因组或较低水平的显著性下在 T2D GWASs 中识别的基因中的途径富集。在较低的显著性阈值下的基因显示出与胰岛素分泌相关的途径的富集。值得注意的是,这些基因的物理和遗传相互作用网络显示出胰岛素信号和其他 T2D 病理生理学相关途径的稳健富集,包括胰岛素分泌。该网络还代表了与胰岛素分泌和胰岛素作用相互作用的报告基因,这些基因靶向抗糖尿病药物。相互作用的药物基因本身表现出胰岛素信号和其他与 T2D 相关的途径的过度表现。接下来,我们从非糖尿病和糖尿病患者中生成了多个胰岛素反应组织的全基因组表达谱。值得注意的是,差异表达的基因与网络基因有显著重叠,交集显示出与 T2D 病理生理学一致的胰岛素信号和其他途径的富集。文献检索使我们的基因组、相互作用组、转录组和毒理基因组证据集中在 TGF-β信号通路,该通路已知在胰腺胰岛的发育和功能以及胰岛素信号转导中发挥关键作用。总之,我们发现 GWAS 基因与胰岛素分泌直接相关,通过与其他基因合作,间接与胰岛素抵抗相关。这似乎支持了这样一种流行病学证据,即环境触发的胰岛素抵抗与遗传编程的β细胞功能障碍相互作用,导致糖尿病。