Suppr超能文献

单细胞基因表达分析揭示 2 型糖尿病中β细胞功能障碍和缺陷的机制。

Single-cell gene expression analysis reveals β-cell dysfunction and deficit mechanisms in type 2 diabetes.

机构信息

Biomedical Informatics Lab, School of Computer Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.

School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China.

出版信息

BMC Bioinformatics. 2018 Dec 31;19(Suppl 19):515. doi: 10.1186/s12859-018-2519-1.

Abstract

BACKGROUND

Type 2 diabetes (T2D) is one of the most common chronic diseases. Studies on T2D are mainly built upon bulk-cell data analysis, which measures the average gene expression levels for a population of cells and cannot capture the inter-cell heterogeneity. The single-cell RNA-sequencing technology can provide additional information about the molecular mechanisms of T2D at single-cell level.

RESULTS

In this work, we analyze three datasets of single-cell transcriptomes to reveal β-cell dysfunction and deficit mechanisms in T2D. Focused on the expression levels of key genes, we conduct discrimination of healthy and T2D β-cells using five machine learning classifiers, and extracted major influential factors by calculating correlation coefficients and mutual information. Our analysis shows that T2D β-cells are normal in insulin gene expression in the scenario of low cellular stress (especially oxidative stress), but appear dysfunctional under the circumstances of high cellular stress. Remarkably, oxidative stress plays an important role in affecting the expression of insulin gene. In addition, by analyzing the genes related to apoptosis, we found that the TNFR1-, BAX-, CAPN1- and CAPN2-dependent pathways may be crucial for β-cell apoptosis in T2D. Finally, personalized analysis indicates cell heterogeneity and individual-specific insulin gene expression.

CONCLUSIONS

Oxidative stress is an important influential factor on insulin gene expression in T2D. Based on the uncovered mechanism of β-cell dysfunction and deficit, targeting key genes in the apoptosis pathway along with alleviating oxidative stress could be a potential treatment strategy for T2D.

摘要

背景

2 型糖尿病(T2D)是最常见的慢性疾病之一。T2D 的研究主要基于批量细胞数据分析,该分析测量了细胞群体的平均基因表达水平,无法捕捉细胞间的异质性。单细胞 RNA 测序技术可以在单细胞水平上提供有关 T2D 分子机制的额外信息。

结果

在这项工作中,我们分析了三个单细胞转录组数据集,以揭示 T2D 中β细胞功能障碍和缺陷的机制。我们关注关键基因的表达水平,使用五种机器学习分类器对健康和 T2Dβ细胞进行区分,并通过计算相关系数和互信息来提取主要影响因素。我们的分析表明,在细胞应激(特别是氧化应激)低的情况下,T2Dβ细胞的胰岛素基因表达正常,但在细胞应激高的情况下,β细胞表现出功能障碍。值得注意的是,氧化应激在影响胰岛素基因表达方面起着重要作用。此外,通过分析与细胞凋亡相关的基因,我们发现 TNFR1、BAX、CAPN1 和 CAPN2 依赖性途径可能在 T2D 中β细胞凋亡中起关键作用。最后,个性化分析表明细胞异质性和个体特异性胰岛素基因表达。

结论

氧化应激是 T2D 中胰岛素基因表达的重要影响因素。基于揭示的β细胞功能障碍和缺陷机制,针对凋亡途径中的关键基因并减轻氧化应激可能是 T2D 的一种潜在治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/baa8/6311914/be07aa7681db/12859_2018_2519_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验