Laboratory of Molecular Genetics, Institute for Virus Research, Kyoto University, Kyoto, Japan.
PLoS One. 2013;8(1):e53578. doi: 10.1371/journal.pone.0053578. Epub 2013 Jan 7.
The innate immune system recognizes viral nucleic acids and stimulates cellular antiviral responses. Intracellular detection of viral RNA is mediated by the Retinoic acid inducible gene (RIG)-I Like Receptor (RLR), leading to production of type I interferon (IFN) and pro-inflammatory cytokines. Once cells are infected with a virus, RIG-I and MDA5 bind to viral RNA and undergo conformational change to transmit a signal through direct interaction with downstream CARD-containing adaptor protein, IFN-β promoter stimulator-1 (IPS-1, also referred as MAVS/VISA/Cardif). IPS-1 is composed of N-terminal Caspase Activation and Recruitment Domain (CARD), proline-rich domain, intermediate domain, and C-terminal transmembrane (TM) domain. The TM domain of IPS-1 anchors it to the mitochondrial outer membrane. It has been hypothesized that activated RLR triggers the accumulation of IPS-1, which forms oligomer as a scaffold for downstream signal proteins. However, the exact mechanisms of IPS-1-mediated signaling remain controversial. In this study, to reveal the details of IPS-1 signaling, we used an artificial oligomerization system to induce oligomerization of IPS-1 in cells. Artificial oligomerization of IPS-1 activated antiviral signaling without a viral infection. Using this system, we investigated the domain-requirement of IPS-1 for its signaling. We discovered that artificial oligomerization of IPS-1 could overcome the requirement of CARD and the TM domain. Moreover, from deletion- and point-mutant analyses, the C-terminal Tumor necrosis factor Receptor-Associated Factor (TRAF) binding motif of IPS-1 (aa. 453-460) present in the intermediate domain is critical for downstream signal transduction. Our results suggest that IPS-1 oligomerization is essential for the formation of a multiprotein signaling complex and enables downstream activation of transcription factors, Interferon Regulatory Factor 3 (IRF3) and Nuclear Factor-κB (NF-κB), leading to type I IFN and pro-inflammatory cytokine production.
天然免疫系统识别病毒核酸并刺激细胞抗病毒反应。细胞内检测病毒 RNA 是由视黄酸诱导基因(RIG)-I 样受体(RLR)介导的,导致 I 型干扰素(IFN)和促炎细胞因子的产生。一旦细胞被病毒感染,RIG-I 和 MDA5 与病毒 RNA 结合,并通过与下游含有 CARD 的衔接蛋白 IFN-β 启动子刺激因子-1(IPS-1,也称为 MAVS/VISA/Cardif)直接相互作用发生构象变化来传递信号。IPS-1 由 N 端半胱氨酸天冬氨酸蛋白酶激活和募集结构域(CARD)、富含脯氨酸结构域、中间结构域和 C 端跨膜(TM)结构域组成。IPS-1 的 TM 结构域将其锚定在线粒体的外膜上。人们假设激活的 RLR 触发 IPS-1 的积累,IPS-1 作为支架形成下游信号蛋白的寡聚体。然而,IPS-1 介导的信号转导的确切机制仍存在争议。在这项研究中,为了揭示 IPS-1 信号转导的细节,我们使用人工寡聚化系统在细胞中诱导 IPS-1 的寡聚化。IPS-1 的人工寡聚化在没有病毒感染的情况下激活抗病毒信号。使用该系统,我们研究了 IPS-1 信号转导所需的结构域。我们发现 IPS-1 的人工寡聚化可以克服 CARD 和 TM 结构域的要求。此外,通过缺失和点突变分析,IPS-1 中间结构域中存在的 TNF 受体相关因子(TRAF)结合基序(aa.453-460)对于下游信号转导至关重要。我们的结果表明,IPS-1 寡聚化对于形成多蛋白信号复合物是必不可少的,并且能够使转录因子干扰素调节因子 3(IRF3)和核因子-κB(NF-κB)的下游激活,导致 I 型 IFN 和促炎细胞因子的产生。