State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China.
Anal Chim Acta. 2013 Jan 25;761:149-56. doi: 10.1016/j.aca.2012.11.025. Epub 2012 Nov 23.
Time-resolved luminescence bioassay technique using lanthanide complexes as luminescent probes/sensors has shown great utilities in clinical diagnostics and biotechnology discoveries. In this work, a novel terpyridine polyacid derivative that can form highly stable complexes with lanthanide ions in aqueous media, (4'-hydroxy-2,2':6',2''-terpyridine-6,6''-diyl) bis(methylenenitrilo) tetrakis(acetic acid) (HTTA), was designed and synthesized for developing time-resolved luminescence pH sensors based on its Eu(3+) and Tb(3+) complexes. The luminescence characterization results reveal that the luminescence intensity of HTTA-Eu(3+) is strongly dependent on the pH values in weakly acidic to neutral media (pK(a) = 5.8, pH 4.8-7.5), while that of HTTA-Tb(3+) is pH-independent. This unique luminescence response allows the mixture of HTTA-Eu(3+) and HTTA-Tb(3+) (the HTTA-Eu(3+)/Tb(3+) mixture) to be used as a ratiometric luminescence sensor for the time-resolved luminescence detection of pH with the intensity ratio of its Tb(3+) emission at 540 nm to its Eu(3+) emission at 610 nm, I(540 nm)/I(610 nm), as a signal. Moreover, the UV absorption spectrum changes of the HTTA-Eu(3+)/Tb(3+) mixture at different pHs (pH 4.0-7.0) also display a ratiometric response to the pH changes with the ratio of absorbance at 290 nm to that at 325 nm, A(290 nm)/A(325 nm), as a signal. This feature enables the HTTA-Eu(3+)/Tb(3+) mixture to have an additional function for the pH detection with the absorption spectrometry technique. For loading the complexes into the living cells, the acetoxymethyl ester of HTTA was synthesized and used for loading HTTA-Eu(3+) and HTTA-Tb(3+) into the cultured HeLa cells. The luminescence imaging results demonstrated the practical utility of the new sensor for the time-resolved luminescence cell imaging application.
基于镧系配合物作为荧光探针/传感器的时间分辨荧光生物分析技术在临床诊断和生物技术发现中显示出巨大的应用潜力。在这项工作中,设计并合成了一种新型的三吡啶多酸衍生物(4'-羟基-2,2':6',2''-三联吡啶-6,6''-二基)双(亚甲基亚氨基)四乙酸(HTTA),它可以与镧系离子在水相介质中形成高度稳定的配合物,用于开发基于其 Eu(3+)和 Tb(3+)配合物的时间分辨荧光 pH 传感器。荧光特性研究结果表明,HTTA-Eu(3+)的荧光强度强烈依赖于弱酸性至中性介质中的 pH 值(pK(a) = 5.8,pH 4.8-7.5),而 HTTA-Tb(3+)的荧光强度则与 pH 值无关。这种独特的荧光响应使得 HTTA-Eu(3+)和 HTTA-Tb(3+)的混合物(HTTA-Eu(3+)/Tb(3+)混合物)能够用作时间分辨荧光检测 pH 值的比率型荧光传感器,其 Tb(3+)在 540nm 处的发射强度与 Eu(3+)在 610nm 处的发射强度的强度比,I(540nm)/I(610nm),作为信号。此外,HTTA-Eu(3+)/Tb(3+)混合物在不同 pH 值(pH 4.0-7.0)下的紫外吸收光谱变化也对 pH 值变化表现出比率响应,以 290nm 处的吸光度与 325nm 处的吸光度之比,A(290nm)/A(325nm),作为信号。这一特性使得 HTTA-Eu(3+)/Tb(3+)混合物具有使用吸收光谱技术进行 pH 检测的附加功能。为了将配合物载入活细胞中,合成了 HTTA 的乙酰氧甲酯,并将其用于将 HTTA-Eu(3+)和 HTTA-Tb(3+)载入培养的 HeLa 细胞中。荧光成像结果证明了新传感器在时间分辨荧光细胞成像应用中的实际应用价值。