Suppr超能文献

多图像超分辨率和单/多图像模糊反卷积的统一盲方法。

Unified blind method for multi-image super-resolution and single/multi-image blur deconvolution.

机构信息

Samsung Telecommunications America, Richardson, TX 75082, USA.

出版信息

IEEE Trans Image Process. 2013 Jun;22(6):2101-14. doi: 10.1109/TIP.2013.2237915. Epub 2013 Jan 9.

Abstract

This paper presents, for the first time, a unified blind method for multi-image super-resolution (MISR or SR), single-image blur deconvolution (SIBD), and multi-image blur deconvolution (MIBD) of low-resolution (LR) images degraded by linear space-invariant (LSI) blur, aliasing, and additive white Gaussian noise (AWGN). The proposed approach is based on alternating minimization (AM) of a new cost function with respect to the unknown high-resolution (HR) image and blurs. The regularization term for the HR image is based upon the Huber-Markov random field (HMRF) model, which is a type of variational integral that exploits the piecewise smooth nature of the HR image. The blur estimation process is supported by an edge-emphasizing smoothing operation, which improves the quality of blur estimates by enhancing strong soft edges toward step edges, while filtering out weak structures. The parameters are updated gradually so that the number of salient edges used for blur estimation increases at each iteration. For better performance, the blur estimation is done in the filter domain rather than the pixel domain, i.e., using the gradients of the LR and HR images. The regularization term for the blur is Gaussian (L2 norm), which allows for fast noniterative optimization in the frequency domain. We accelerate the processing time of SR reconstruction by separating the upsampling and registration processes from the optimization procedure. Simulation results on both synthetic and real-life images (from a novel computational imager) confirm the robustness and effectiveness of the proposed method.

摘要

本文首次提出了一种统一的盲方法,用于对低分辨率(LR)图像进行线性空间不变(LSI)模糊、混叠和加性高斯白噪声(AWGN)退化的多图像超分辨率(MISR 或 SR)、单图像去卷积(SIBD)和多图像去卷积(MIBD)。所提出的方法基于新代价函数相对于未知高分辨率(HR)图像和模糊的交替最小化(AM)。HR 图像的正则化项基于 Huber-Markov 随机场(HMRF)模型,这是一种利用 HR 图像分段平滑性质的变分积分。模糊估计过程得到边缘增强平滑操作的支持,该操作通过增强强软边缘向阶跃边缘,同时滤除弱结构,从而提高模糊估计的质量。参数逐渐更新,使得每次迭代用于模糊估计的显著边缘数量增加。为了获得更好的性能,模糊估计在滤波器域而不是像素域中进行,即使用 LR 和 HR 图像的梯度。模糊的正则化项为高斯(L2 范数),允许在频域中进行快速非迭代优化。我们通过将上采样和配准过程与优化过程分离,来加速 SR 重建的处理时间。基于合成和真实生活图像(来自新型计算成像仪)的仿真结果证实了所提出方法的鲁棒性和有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验