Laboratory of Cellular Biochemistry, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
Glycobiology. 2013 May;23(5):603-12. doi: 10.1093/glycob/cwt002. Epub 2013 Jan 11.
Mouse sialyltransferases are grouped into four families according to the type of carbohydrate linkage they synthesize: β-galactoside α2,3-sialyltransferases (ST3Gal-I-VI), β-galactoside α2,6-sialyltransferases (ST6Gal-I and ST6Gal-II), N-acetylgalactosamine α2,6-sialyltransferases (ST6GalNAc-I-VI) and α2,8-sialyltransferases (ST8Sia-I-VI). These sialyltransferases feature a type II transmembrane topology and contain highly conserved motifs termed sialylmotifs L, S, III and VS. Sialylmotifs L and S are involved in substrate binding, whereas sialylmotifs III and VS are involved in catalytic activity. In addition to the conventional sialylmotifs, family and subfamily specific sequence motifs have been proposed. In this study, we analyzed the properties and functions of sialylmotifs in characterizing the enzymatic activity of mouse ST8Sia-I and ST8Sia-VI, both of which are α2,8-sialyltransferases involved in the synthesis of either ganglioside GD3 or disialic acid structures on O-glycans, respectively. The ST8Sia-VI-based chimeric enzymes, whose sialylmotif L sequences were replaced with those of ST8Sia-I and ST8Sia-IV (polysialic acid synthetase), were still active toward O-glycans. However, ST8Sia-VI-based chimeric enzymes lost expression or activity when their sialylmotif L sequences were replaced with those of ST3Gal-I and ST6GalNAc-II, suggesting the existence of an ST8Sia family specific motif in the sialylmotif L. The ST8Sia-I- and ST8Sia-VI-based chimeric enzymes lost enzymatic activity when their sialylmotif S sequences were interchanged. Amino acid substitutions in the sialylmotif S of ST8Sia-I and ST8Sia-VI also affected the enzymatic activity in many cases, indicating the crucial and functional importance of the sialylmotif S in substrate binding, which determines the substrate specificity of sialyltransferase.
β-半乳糖苷α2,3-唾液酸转移酶(ST3Gal-I-VI)、β-半乳糖苷α2,6-唾液酸转移酶(ST6Gal-I 和 ST6Gal-II)、N-乙酰半乳糖胺α2,6-唾液酸转移酶(ST6GalNAc-I-VI)和α2,8-唾液酸转移酶(ST8Sia-I-VI)。这些唾液酸转移酶具有 II 型跨膜拓扑结构,并包含高度保守的基序,称为唾液酸基序 L、S、III 和 VS。唾液酸基序 L 和 S 参与底物结合,而唾液酸基序 III 和 VS 参与催化活性。除了常规的唾液酸基序外,还提出了家族和亚家族特异性序列基序。在这项研究中,我们分析了唾液酸基序的特性和功能,以表征参与神经节苷脂 GD3 或 O-聚糖上二唾液酸结构合成的鼠 ST8Sia-I 和 ST8Sia-VI 的酶活性。基于 ST8Sia-VI 的嵌合酶,其唾液酸基序 L 序列被 ST8Sia-I 和 ST8Sia-IV(多唾液酸合酶)的序列取代,仍然对 O-聚糖具有活性。然而,当基于 ST8Sia-VI 的嵌合酶的唾液酸基序 L 序列被 ST3Gal-I 和 ST6GalNAc-II 的序列取代时,它们失去了表达或活性,这表明在唾液酸基序 L 中存在一个 ST8Sia 家族特异性基序。基于 ST8Sia-I 和 ST8Sia-VI 的嵌合酶在其唾液酸基序 S 序列互换时失去了酶活性。ST8Sia-I 和 ST8Sia-VI 的唾液酸基序 S 中的氨基酸取代在许多情况下也影响了酶活性,这表明唾液酸基序 S 在底物结合中的关键和功能重要性,这决定了唾液酸转移酶的底物特异性。