Mercer Aaron J, Thoreson Wallace B
Departments of Molecular and Integrative Physiology, University Of Michigan, Ann Arbor, USA.
Curr Protoc Neurosci. 2013 Jan;Chapter 2:Unit 2.18. doi: 10.1002/0471142301.ns0218s62.
At synapses in the central nervous system, precisely localized assemblies of presynaptic proteins, neurotransmitter-filled vesicles, and postsynaptic receptors are required to communicate messages between neurons. Our understanding of synaptic function has been significantly advanced using electrophysiological methods, but the dynamic spatial behavior and real-time organization of synapses remains poorly understood. In this unit, we describe a method for labeling individual presynaptic calcium channels with photostable quantum dots for single-particle tracking analysis. We have used this technique to examine the mobility of L-type calcium channels in the presynaptic membrane of rod and cone photoreceptors in the retina. These channels control release of glutamate-filled synaptic vesicles at the ribbon synapses in photoreceptor terminals. This technique offers the advantage of providing a real-time biophysical readout of ion channel mobility and can be manipulated by pharmacological or electrophysiological methods. For example, the combination of electrophysiological and single-particle tracking experiments has revealed that fusion of nearby vesicles influences calcium channel mobility and changes in channel mobility can influence release. These approaches can also be readily adapted to examine membrane proteins in other systems.
在中枢神经系统的突触处,需要精确局部化的突触前蛋白、充满神经递质的囊泡和突触后受体组件来在神经元之间传递信息。我们利用电生理方法对突触功能的理解有了显著进展,但突触的动态空间行为和实时组织仍知之甚少。在本单元中,我们描述了一种用光稳定量子点标记单个突触前钙通道以进行单粒子跟踪分析的方法。我们已使用该技术来研究视网膜中视杆和视锥光感受器突触前膜中L型钙通道的流动性。这些通道控制光感受器终末带状突触处充满谷氨酸的突触囊泡的释放。该技术的优点是能实时提供离子通道流动性的生物物理读数,并且可以通过药理学或电生理方法进行操控。例如,电生理和单粒子跟踪实验相结合已揭示,附近囊泡的融合会影响钙通道的流动性,而通道流动性的变化会影响释放。这些方法也可很容易地用于研究其他系统中的膜蛋白。