Suppr超能文献

脑内的突触模态编码:同步尖峰时间、microRNAs、外泌体和表观遗传过程的可能参与。

Transsynaptic modality codes in the brain: possible involvement of synchronized spike timing, microRNAs, exosomes and epigenetic processes.

机构信息

Center for Brain and Cognition, University of California San Diego La Jolla, CA, SA.

出版信息

Front Integr Neurosci. 2013 Jan 4;6:126. doi: 10.3389/fnint.2012.00126. eCollection 2012.

Abstract

This paper surveys two different mechanisms by which a presynaptic cell can modulate the structure and function of the postsynaptic cell. We first present the evidence that this occurs, and then discuss two mechanisms that could bring this about. The first hypothesis relates to the long lasting effects that the spike patterns of presynaptic axons may exert by modulating activity-inducible programs in postsynaptic cells. The second hypothesis is based on recently obtained evidence that, the afferent neuron at the neuromuscular junction buds off exosomes at its synapse and carries a cargo of Wg and Evi, which are large molecular transsynaptic signaling agents (LMTSAs). Further evidence indicates that many types of neurons bud off exosomes containing payloads of various lipids, proteins, and types of RNA. The evidence suggests that they are transmitted across the synapse and are taken up by the postsynaptic structure either by perisynaptic or exosynaptic mechanisms, thus mediating the transfer of information between neurons. To date, the molecular hypothesis has been limited to local interactions within the synapse of concern. In this paper, we explore the possibility that this represents a mechanism for information transfer involving the postsynaptic neuron as a whole. This entails a review of the known functions of these molecules in neuronal physiology, together with an estimate of the possible types of information they could carry and how they might affect neurocomputations.

摘要

本文调查了突触前细胞调节突触后细胞结构和功能的两种不同机制。我们首先介绍了这种情况发生的证据,然后讨论了两种可能导致这种情况发生的机制。第一个假设与突触前轴突的尖峰模式可能通过调节突触后细胞中的活性诱导程序来产生持久影响有关。第二个假设基于最近获得的证据,即神经肌肉接头处的传入神经元在其突触处释放出含有 Wg 和 Evi 的外泌体,它们是大的分子跨突触信号转导剂(LMTSA)。进一步的证据表明,许多类型的神经元释放出含有各种脂质、蛋白质和类型 RNA 的载物的外泌体。这些证据表明,它们通过突触传递,并被突触后结构通过周质或外突触机制吸收,从而介导神经元之间的信息传递。迄今为止,分子假说仅限于所关注的突触内的局部相互作用。在本文中,我们探讨了这种情况是否代表了一种涉及整个突触后神经元的信息传递机制。这需要回顾这些分子在神经元生理学中的已知功能,以及它们可能携带的信息类型及其可能如何影响神经计算的估计。

相似文献

2
The role of epigenetic-related codes in neurocomputation: dynamic hardware in the brain.
Philos Trans R Soc Lond B Biol Sci. 2014 Sep 26;369(1652). doi: 10.1098/rstb.2013.0519.
3
Delivery of different genes into presynaptic and postsynaptic neocortical neurons connected by a BDNF-TrkB synapse.
Brain Res. 2019 Jun 1;1712:16-24. doi: 10.1016/j.brainres.2019.01.038. Epub 2019 Jan 30.
4
Transsynaptic signaling by postsynaptic synapse-associated protein 97.
J Neurosci. 2006 Feb 22;26(8):2343-57. doi: 10.1523/JNEUROSCI.5247-05.2006.
5
Synapse formation between isolated axons requires presynaptic soma and redistribution of postsynaptic AChRs.
J Neurophysiol. 2003 May;89(5):2611-9. doi: 10.1152/jn.00898.2002. Epub 2003 Jan 15.
7
Exosomal transfer of proteins and RNAs at synapses in the nervous system.
Biol Direct. 2007 Nov 30;2:35. doi: 10.1186/1745-6150-2-35.
8
Presynaptic control of transmission along the pathway mediating disynaptic reciprocal inhibition in the cat.
J Physiol. 2000 Aug 1;526 Pt 3(Pt 3):623-37. doi: 10.1111/j.1469-7793.2000.t01-1-00623.x.

引用本文的文献

1
The Coding and Small Non-coding Hippocampal Synaptic RNAome.
Mol Neurobiol. 2021 Jun;58(6):2940-2953. doi: 10.1007/s12035-021-02296-y. Epub 2021 Feb 10.
2
Exosomes as Novel Regulators of Adult Neurogenic Niches.
Front Cell Neurosci. 2016 Jan 19;9:501. doi: 10.3389/fncel.2015.00501. eCollection 2015.
4
Diagnostic and therapeutic potentials of exosomes in CNS diseases.
Brain Res. 2015 Aug 18;1617:63-71. doi: 10.1016/j.brainres.2014.09.070. Epub 2014 Oct 7.
5
Methods for the extraction and RNA profiling of exosomes.
World J Methodol. 2013 Mar 26;3(1):11-8. doi: 10.5662/wjm.v3.i1.11.
6
The role of epigenetic-related codes in neurocomputation: dynamic hardware in the brain.
Philos Trans R Soc Lond B Biol Sci. 2014 Sep 26;369(1652). doi: 10.1098/rstb.2013.0519.
7
The RNA-centred view of the synapse: non-coding RNAs and synaptic plasticity.
Philos Trans R Soc Lond B Biol Sci. 2014 Sep 26;369(1652). doi: 10.1098/rstb.2013.0504.
8
Analysis of the RNA content of the exosomes derived from blood serum and urine and its potential as biomarkers.
Philos Trans R Soc Lond B Biol Sci. 2014 Sep 26;369(1652). doi: 10.1098/rstb.2013.0502.

本文引用的文献

1
Exosomes go with the Wnt.
Cell Logist. 2012 Jul 1;2(3):169-173. doi: 10.4161/cl.21981.
2
Extracellular vesicles as an emerging mechanism of cell-to-cell communication.
Endocrine. 2013 Aug;44(1):11-9. doi: 10.1007/s12020-012-9839-0. Epub 2012 Dec 1.
3
Bi-directional astrocytic regulation of neuronal activity within a network.
Front Comput Neurosci. 2012 Nov 2;6:92. doi: 10.3389/fncom.2012.00092. eCollection 2012.
4
Differences in sensitivity to neural timing among cortical areas.
J Neurosci. 2012 Oct 24;32(43):15142-7. doi: 10.1523/JNEUROSCI.1411-12.2012.
5
6
Invasion of lesion territory by regenerating fibers after spinal cord injury in adult macaque monkeys.
Neuroscience. 2012 Dec 27;227:271-82. doi: 10.1016/j.neuroscience.2012.09.052. Epub 2012 Oct 2.
7
Exosomes and the emerging field of exosome-based gene therapy.
Curr Gene Ther. 2012 Aug;12(4):262-74. doi: 10.2174/156652312802083594.
8
Loss of microRNAs in pyramidal neurons leads to specific changes in inhibitory synaptic transmission in the prefrontal cortex.
Mol Cell Neurosci. 2012 Jul;50(3-4):283-92. doi: 10.1016/j.mcn.2012.06.002. Epub 2012 Jun 20.
9
Microglial microvesicle secretion and intercellular signaling.
Front Physiol. 2012 May 22;3:149. doi: 10.3389/fphys.2012.00149. eCollection 2012.
10
Emerging role of neuronal exosomes in the central nervous system.
Front Physiol. 2012 May 28;3:145. doi: 10.3389/fphys.2012.00145. eCollection 2012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验