Morales-Cruz Moraima, Flores-Fernández Giselle M, Morales-Cruz Myreisa, Orellano Elsie A, Rodriguez-Martinez José A, Ruiz Mercedes, Griebenow Kai
Department of Chemistry, University of Puerto Rico, Río Piedras Campus, P.O. Box 23346, San Juan, Puerto Rico 00931-3346, Puerto Rico.
Results Pharma Sci. 2012;2:79-85. doi: 10.1016/j.rinphs.2012.11.001.
One of the first methods to encapsulate drugs within polymer nanospheres was developed by Fessi and coworkers in 1989 and consisted of one-step nanoprecipitation based on solvent displacement. However, proteins are poorly encapsulated within polymer nanoparticles using this method because of their limited solubility in organic solvents. To overcome this limitation, we developed a two-step nanoprecipitation method and encapsulated various proteins with high efficiency into poly(lactic-co-glycolic)acid (PLGA) nanospheres (NP). In this method, a protein nanoprecipitation step is used first followed by a second polymer nanoprecipitation step. Two model enzymes, lysozyme and α-chymotrypsin, were used for the optimization of the method. We obtained encapsulation efficiencies of >70%, an amount of buffer-insoluble protein aggregates of typically <2%, and a high residual activity of typically >90%. The optimum conditions identified for lysozyme were used to successfully encapsulate cytochrome c(Cyt-c), an apoptosis-initiating basic protein of similar size, to verify reproducibility of the encapsulation procedure. The size of the Cyt-c loaded-PLGA nanospheres was around 300-400 nm indicating the potential of the delivery system to passively target tumors. Cell viability studies, using a human cervical cancer cell line (HeLa), demonstrate excellent biocompatibility of the PLGA nanoparticles. PLGA nanoparticles carrying encapsulated Cyt-c were not efficient in causing apoptosis presumably because PLGA nanoparticles are not efficiently taken up by the cells. Future systems will have to be optimized to ascertain efficient cellular uptake of the nanoparticles by, e.g., surface modification with receptor ligands.
1989年,费西及其同事开发了将药物包裹在聚合物纳米球内的首批方法之一,该方法基于溶剂置换的一步纳米沉淀法。然而,由于蛋白质在有机溶剂中的溶解度有限,使用这种方法将其包裹在聚合物纳米颗粒中的效率很低。为了克服这一限制,我们开发了一种两步纳米沉淀法,并将各种蛋白质高效地包裹到聚乳酸-乙醇酸共聚物(PLGA)纳米球(NP)中。在这种方法中,首先进行蛋白质纳米沉淀步骤,随后进行第二步聚合物纳米沉淀步骤。使用两种模型酶——溶菌酶和α-胰凝乳蛋白酶对该方法进行优化。我们获得了大于70%的包封率,通常小于2%的缓冲液不溶性蛋白质聚集体量,以及通常大于90%的高残余活性。用于溶菌酶的最佳条件被用于成功包裹细胞色素c(Cyt-c),一种大小相似的凋亡起始碱性蛋白,以验证包裹过程的可重复性。负载Cyt-c的PLGA纳米球大小约为300-400nm,表明该递送系统具有被动靶向肿瘤的潜力。使用人宫颈癌细胞系(HeLa)进行的细胞活力研究表明PLGA纳米颗粒具有出色的生物相容性。携带包裹的Cyt-c的PLGA纳米颗粒在诱导凋亡方面效率不高,可能是因为PLGA纳米颗粒没有被细胞有效摄取。未来的系统必须进行优化,以确定纳米颗粒能否通过例如用受体配体进行表面修饰来实现有效的细胞摄取。