S. Grillner: Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden.
J Physiol. 2013 Nov 15;591(22):5425-31. doi: 10.1113/jphysiol.2012.246660. Epub 2013 Jan 14.
The group of nuclei within the basal ganglia of the forebrain is central to the control of movement. We present data showing that the structure and function of the basal ganglia have been conserved throughout vertebrate evolution over some 560 million years. The interaction between the different nuclei within the basal ganglia is conserved as well as the cellular and synaptic properties and transmitters. We consider the role of the conserved basal ganglia circuitry for basic patterns of motor behaviour controlled via brainstem circuits. The output of the basal ganglia consists of tonically active GABAergic neurones, which target brainstem motor centres responsible for different patterns of behaviour, such as eye and locomotor movements, posture, and feeding. A prerequisite for activating or releasing a motor programme is that this GABAergic inhibition is temporarily reduced. This can be achieved through activation of GABAergic projection neurons from striatum, the input level of the basal ganglia, given an appropriate synaptic drive from cortex, thalamus and the dopamine system. The tonic inhibition of the motor centres at rest most likely serves to prevent the different motor programmes from becoming active when not intended. Striatal projection neurones are subdivided into one group with dopamine 1 receptors that provides increased excitability of the direct pathway that can initiate movements, while inhibitory dopamine 2 receptors are expressed on neurones that instead inhibit movements and are part of the 'indirect loop' in mammals as well as lamprey. We review the evidence showing that all basic features of the basal ganglia have been conserved throughout vertebrate phylogeny, and discuss these findings in relation to the role of the basal ganglia in selection of behaviour.
大脑前脑基底神经节中的核团群对于运动的控制至关重要。我们提出的数据表明,在过去的 5.6 亿年中,脊椎动物的进化过程中,基底神经节的结构和功能一直得到了保守。基底神经节内不同核团之间的相互作用以及细胞和突触特性和递质都是保守的。我们考虑了保守的基底神经节回路在通过脑干回路控制基本运动行为模式中的作用。基底神经节的输出由持续活跃的 GABA 能神经元组成,这些神经元靶向负责不同行为模式的脑干运动中心,例如眼动和运动、姿势和进食。激活或释放运动程序的前提是暂时减少这种 GABA 能抑制。这可以通过来自纹状体的 GABA 能投射神经元的激活来实现,纹状体是基底神经节的输入水平,只要有来自皮层、丘脑和多巴胺系统的适当突触驱动即可。在休息时,运动中心的紧张抑制很可能有助于防止不同的运动程序在不需要时变得活跃。纹状体投射神经元分为一组,具有多巴胺 1 受体,可增加直接通路的兴奋性,直接通路可以启动运动,而抑制性多巴胺 2 受体则表达在神经元上,这些神经元抑制运动,是哺乳动物以及七鳃鳗中的“间接回路”的一部分。我们回顾了表明所有基本特征的基底神经节在整个脊椎动物进化过程中都得到保守的证据,并讨论了这些发现与基底神经节在行为选择中的作用的关系。