Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA.
Neuroinformatics. 2013 Jul;11(3):291-300. doi: 10.1007/s12021-013-9176-3.
Real-time functional magnetic resonance imaging (rt-fMRI) has recently gained interest as a possible means to facilitate the learning of certain behaviors. However, rt-fMRI is limited by processing speed and available software, and continued development is needed for rt-fMRI to progress further and become feasible for clinical use. In this work, we present an open-source rt-fMRI system for biofeedback powered by a novel Graphics Processing Unit (GPU) accelerated motion correction strategy as part of the BioImage Suite project ( www.bioimagesuite.org ). Our system contributes to the development of rt-fMRI by presenting a motion correction algorithm that provides an estimate of motion with essentially no processing delay as well as a modular rt-fMRI system design. Using empirical data from rt-fMRI scans, we assessed the quality of motion correction in this new system. The present algorithm performed comparably to standard (non real-time) offline methods and outperformed other real-time methods based on zero order interpolation of motion parameters. The modular approach to the rt-fMRI system allows the system to be flexible to the experiment and feedback design, a valuable feature for many applications. We illustrate the flexibility of the system by describing several of our ongoing studies. Our hope is that continuing development of open-source rt-fMRI algorithms and software will make this new technology more accessible and adaptable, and will thereby accelerate its application in the clinical and cognitive neurosciences.
实时功能磁共振成像(rt-fMRI)最近作为一种促进某些行为学习的可能手段引起了人们的兴趣。然而,rt-fMRI 受到处理速度和可用软件的限制,需要进一步的开发,以便 rt-fMRI 能够进一步发展并在临床应用中变得可行。在这项工作中,我们提出了一个由新型图形处理单元(GPU)加速运动校正策略驱动的开源 rt-fMRI 生物反馈系统,作为 BioImage Suite 项目(www.bioimagesuite.org)的一部分。我们的系统通过提供一种运动校正算法,为 rt-fMRI 的发展做出了贡献,该算法可以在基本没有处理延迟的情况下提供运动估计,并且具有模块化的 rt-fMRI 系统设计。我们使用 rt-fMRI 扫描的经验数据评估了这个新系统中的运动校正质量。该算法的性能与标准(非实时)离线方法相当,并且优于基于运动参数零阶插值的其他实时方法。该系统的模块化方法允许系统灵活适应实验和反馈设计,这是许多应用的一个有价值的特性。我们通过描述我们正在进行的几个研究来说明系统的灵活性。我们希望,继续开发开源 rt-fMRI 算法和软件将使这项新技术更易于访问和适应,从而加速其在临床和认知神经科学中的应用。