Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA.
Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):1652-7. doi: 10.1073/pnas.1218528110. Epub 2013 Jan 14.
The human sensor of double-stranded RNA (dsRNA) oligoadenylate synthetase 1 (hOAS1) polymerizes ATP into 2',5'-linked iso-RNA (2-5A) involved in innate immunity, cell cycle, and differentiation. We report the crystal structure of hOAS1 in complex with dsRNA and 2'-deoxy ATP at 2.7 Å resolution, which reveals the mechanism of cytoplasmic dsRNA recognition and activation of oligoadenylate synthetases. Human OAS1 recognizes dsRNA using a previously uncharacterized protein/RNA interface that forms via a conformational change induced by binding of dsRNA. The protein/RNA interface involves two minor grooves and has no sequence-specific contacts, with the exception of a single hydrogen bond between the -NH(2) group of nucleobase G17 and the carbonyl oxygen of serine 56. Using a biochemical readout, we show that hOAS1 undergoes more than 20,000-fold activation upon dsRNA binding and that canonical or GU-wobble substitutions produce dsRNA mutants that retain either full or partial activity, in agreement with the crystal structure. Ultimately, the binding of dsRNA promotes an elaborate conformational rearrangement in the N-terminal lobe of hOAS1, which brings residues D75, D77, and D148 into proximity and creates coordination geometry for binding of two catalytic Mg(2+) ions and ATP. The assembly of this critical active-site structure provides the gate that couples binding of dsRNA to the production and downstream functions of 2-5A.
人类双链 RNA (dsRNA) 感应器寡腺苷酸合成酶 1 (hOAS1) 将 ATP 聚合成长度为 2',5'-连接的异 RNA (2-5A),参与先天免疫、细胞周期和分化。我们报告了 hOAS1 与 dsRNA 和 2'-脱氧 ATP 复合物的晶体结构,分辨率为 2.7 Å,揭示了细胞质 dsRNA 识别和寡腺苷酸合成酶激活的机制。人类 OAS1 通过结合 dsRNA 诱导的构象变化,利用以前未被表征的蛋白/RNA 界面识别 dsRNA。蛋白/RNA 界面涉及两个小沟,没有序列特异性接触,除了 G17 核碱基的 -NH(2)基团和丝氨酸 56 的羰基氧之间的单个氢键外。使用生化读数,我们表明 hOAS1 在 dsRNA 结合后经历了超过 20,000 倍的激活,并且规范或 GU 摆动取代产生的 dsRNA 突变体保留了全部或部分活性,与晶体结构一致。最终,dsRNA 的结合促进了 hOAS1 的 N 端结构域的复杂构象重排,使 D75、D77 和 D148 接近,并为结合两个催化 Mg(2+)离子和 ATP 创造了配位几何。这种关键活性位点结构的组装提供了一个门,将 dsRNA 的结合与 2-5A 的产生和下游功能联系起来。