Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, USA.
J Am Chem Soc. 2013 Feb 13;135(6):2321-9. doi: 10.1021/ja311080j. Epub 2013 Jan 30.
The nuclear pore complex (NPC) is the proteinaceous nanopore that solely mediates molecular transport across the nuclear envelope between the nucleus and cytoplasm of a eukaryotic cell. Small molecules (<40 kDa) diffuse through the large pore of this multiprotein complex. A passively impermeable macromolecule tagged with a signal peptide is chaperoned through the nanopore by nuclear transport receptors (e.g., importins) owing to their interactions with barrier-forming proteins. Presently, this bimodal transport mechanism is not well understood and is described by controversial models. Herein, we report on a dynamic and spatially resolved mechanism for NPC-mediated molecular transport through nanoscale central and peripheral routes with distinct permeabilities. Specifically, we develop a nanogap-based approach of scanning electrochemical microscopy to precisely measure the extremely high permeability of the nuclear envelope to a small probe molecule, (ferrocenylmethyl)trimethylammonium. Effective medium theories indicate that the passive permeability of 5.9 × 10(-2) cm/s corresponds to the free diffusion of the probe molecule through ~22 nanopores with a radius of 24 nm and a length of 35 nm. Peripheral routes are blocked by wheat germ agglutinin to yield 2-fold lower permeability for 17 nm-radius central routes. This lectin is also used in fluorescence assays to find that importins facilitate the transport of signal-tagged albumin mainly through the 7 nm-thick peripheral route rather than through the sufficiently large central route. We propose that this spatial selectivity is regulated by the conformational changes in barrier-forming proteins that transiently and locally expand the impermeably thin peripheral route while blocking the central route.
核孔复合体(NPC)是一种蛋白纳米孔,仅介导真核细胞质核之间的分子转运。小分子(<40 kDa)通过这个多蛋白复合物的大孔扩散。带有信号肽的无活性大分子在核转运受体(如进口蛋白)的帮助下通过核孔被动运输,这是由于它们与形成屏障的蛋白质相互作用。目前,这种双模态运输机制还没有被很好地理解,并且有争议的模型描述了这种机制。在这里,我们报告了一种动态的、空间分辨的 NPC 介导的分子运输机制,通过纳米级的中央和外围途径具有不同的渗透性。具体来说,我们开发了一种基于纳米间隙的扫描电化学显微镜方法,精确测量小分子((二茂铁甲基)三甲铵)通过核膜的极高渗透性。有效介质理论表明,被动渗透率 5.9×10(-2)cm/s 对应于探针分子通过 ~22 个半径为 24nm、长度为 35nm 的纳米孔的自由扩散。外周途径被麦胚凝集素阻塞,导致半径为 17nm 的中央途径的渗透率降低 2 倍。这种凝集素也用于荧光分析,以发现进口蛋白主要通过 7nm 厚的外周途径而不是足够大的中央途径促进信号标记的白蛋白的运输。我们提出,这种空间选择性是由形成屏障的蛋白质的构象变化调节的,这些蛋白质暂时和局部地扩展了不可渗透的薄外周途径,同时阻塞了中央途径。