Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany.
J Chem Phys. 2013 Jan 14;138(2):024505. doi: 10.1063/1.4772808.
We develop force field parameters for the divalent cations Mg(2+), Ca(2+), Sr(2+), and Ba(2+) for molecular dynamics simulations with the simple point charge-extended (SPC/E) water model. We follow an approach introduced recently for the optimization of monovalent ions, based on the simultaneous optimization of single-ion and ion-pair properties. We consider the solvation free energy of the divalent cations as the relevant single-ion property. As a probe for ion-pair properties we compute the activity derivatives of the salt solutions. The optimization of the ionic force fields is done in two consecutive steps. First, the cation solvation free energy is determined as a function of the Lennard-Jones (LJ) parameters. The peak in the ion-water radial distribution function (RDF) is used as a check of the structural properties of the ions. Second, the activity derivatives of the electrolytes MgY(2), CaY(2), BaY(2), SrY(2) are determined through Kirkwood-Buff solution theory, where Y = Cl(-), Br(-), I(-). The activity derivatives are determined for the restricted set of LJ parameters which reproduce the exact solvation free energy of the divalent cations. The optimal ion parameters are those that match the experimental activity data and therefore simultaneously reproduce single-ion and ion-pair thermodynamic properties. For Ca(2+), Ba(2+), and Sr(2+) such LJ parameters exist. On the other hand, for Mg(2+) the experimental activity derivatives can only be reproduced if we generalize the combination rule for the anion-cation LJ interaction and rescale the effective cation-anion LJ radius, which is a modification that leaves the cation solvation free energy invariant. The divalent cation force fields are transferable within acceptable accuracy, meaning the same cation force field is valid for all halide ions Cl(-), Br(-), I(-) tested in this study.
我们开发了用于带有简单点电荷扩展(SPC/E)水模型的分子动力学模拟的二价阳离子 Mg(2+)、Ca(2+)、Sr(2+) 和 Ba(2+) 的力场参数。我们遵循最近提出的优化单价离子的方法,该方法基于单离子和离子对性质的同时优化。我们将二价阳离子的溶剂化自由能视为相关的单离子性质。作为离子对性质的探针,我们计算盐溶液的活性导数。离子力场的优化分两个连续步骤进行。首先,作为对阳离子溶剂化自由能的函数来确定 Lennard-Jones (LJ) 参数。离子-水径向分布函数 (RDF) 的峰值用于检查离子的结构性质。其次,通过 Kirkwood-Buff 溶液理论确定电解质 MgY(2)、CaY(2)、BaY(2)、SrY(2) 的活性导数,其中 Y = Cl(-)、Br(-)、I(-)。活性导数是通过确定再现二价阳离子精确溶剂化自由能的受限 LJ 参数来确定的。最佳离子参数是与实验活性数据匹配的参数,因此同时再现单离子和离子对热力学性质。对于 Ca(2+)、Ba(2+) 和 Sr(2+),存在这样的 LJ 参数。另一方面,如果我们推广阴离子-阳离子 LJ 相互作用的组合规则并调整有效阳离子-阴离子 LJ 半径,那么对于 Mg(2+),实验活性导数只能通过这种方式再现,这是一种修改方法,使阳离子溶剂化自由能保持不变。二价阳离子力场在可接受的精度内是可转移的,这意味着在这项研究中测试的所有卤化物离子 Cl(-)、Br(-)、I(-) 都使用相同的阳离子力场。