Max Planck Institute of Colloids and Interfaces, Science Park Golm, Potsdam 14424, Germany.
J Chem Phys. 2010 Jan 14;132(2):024109. doi: 10.1063/1.3273903.
Solvated ions are a fundamental constituent of many biological systems. An important class consists of the alkali cations. In particular, potassium (K(+)) is the most abundant ion in the cytoplasm, whereas lithium (Li(+)), rubidium (Rb(+)), and cesium (Cs(+)) are of fundamental physicochemical and medical relevance. A powerful tool to understand ion specificity and cellular systems on a microscopic level is provided by molecular dynamics simulations. Previously, reliable force field parameters for Li(+), K(+), Rb(+), and Cs(+) in aqueous solution have not been available for the simple point charge (SPC) water model widely used in conjunction with the GROMOS force field. We used the Kirkwood-Buff theory to develop force fields for Li(+), K(+), Rb(+), and Cs(+) in SPC water to reproduce experimental data on respective aqueous alkali chloride solutions (LiCl, KCl, RbCl, CsCl). The force field developed reproduces many of the known properties of alkali metal chlorides solutions including densities and partial molar volumes. Our force field is shown to be superior to other common alkali chloride force fields in terms of reproducing the activity derivative, as a prerequisite for a realistic measure of ion-solute association underlying ion-specific phenomena (Hofmeister effects). For lithium and potassium, the ionic radii from cation-water oxygen pair correlation functions and hydration numbers are well reproduced. The force field developed will be useful for modeling physiological conditions and ion-specific phenomena for biomolecular systems.
溶剂化离子是许多生物系统的基本组成部分。其中一个重要的类别是碱金属阳离子。特别是,钾(K(+))是细胞质中最丰富的离子,而锂(Li(+))、铷(Rb(+))和铯(Cs(+))在物理化学和医学方面具有基础性的重要意义。分子动力学模拟为理解离子特异性和细胞系统提供了一种强大的微观水平的工具。以前,在与 GROMOS 力场广泛结合使用的简单点电荷(SPC)水模型中,尚缺乏用于水溶液的 Li(+)、K(+)、Rb(+)和 Cs(+)的可靠力场参数。我们使用 Kirkwood-Buff 理论为 SPC 水中的 Li(+)、K(+)、Rb(+)和 Cs(+)开发了力场,以重现各自的水溶液中碱金属氯化物溶液(LiCl、KCl、RbCl、CsCl)的实验数据。所开发的力场再现了许多碱金属氯化物溶液的已知性质,包括密度和偏摩尔体积。与其他常见的碱金属氯化物力场相比,我们的力场在再现活度导数方面表现出色,这是对离子-溶质相互作用进行实际测量的前提,而这种相互作用是离子特异性现象(Hofmeister 效应)的基础。对于锂和钾,阳离子-水氧对相关函数和水合数的离子半径得到了很好的再现。所开发的力场将有助于模拟生物分子系统的生理条件和离子特异性现象。