Suppr超能文献

胰腺 β 细胞对 ROS 和 RNS 的不同反应。

Differential responses of pancreatic β-cells to ROS and RNS.

机构信息

Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.

出版信息

Am J Physiol Endocrinol Metab. 2013 Mar 15;304(6):E614-22. doi: 10.1152/ajpendo.00424.2012. Epub 2013 Jan 15.

Abstract

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) direct the activation of distinct signaling pathways that determine cell fate. In this study, the pathways activated and the mechanisms by which ROS and RNS control the viability of pancreatic β-cells were examined. Although both nitric oxide and hydrogen peroxide (H₂O₂) induce DNA damage, reduce cell viability, and activate AMPK, the mechanisms of AMPK activation and cell death induction differ between each reactive species. Nitric oxide activates the unfolded protein and heat shock responses and MAPK kinase signaling, whereas H₂O₂ stimulates p53 stabilization and poly(ADP-ribose) polymerase (PARP) activation but fails to induce the unfolded protein or heat shock responses or MAPK activation. The control of cell fate decisions is selective for the form of stress. H₂O₂-mediated reduction in β-cell viability is controlled by PARP, whereas cell death in response to nitric oxide is PARP independent but associated with the nuclear localization of GAPDH. These findings show that both ROS and RNS activate AMPK, induce DNA damage, and reduce cell viability; however, the pathways controlling the responses of β-cells are selective for the type of reactive species.

摘要

活性氧 (ROS) 和活性氮 (RNS) 直接激活不同的信号通路,决定细胞命运。在这项研究中,研究了 ROS 和 RNS 激活的途径以及它们控制胰岛 β 细胞活力的机制。虽然一氧化氮和过氧化氢 (H₂O₂) 都能诱导 DNA 损伤、降低细胞活力和激活 AMPK,但每种活性物质激活 AMPK 的机制和诱导细胞死亡的机制不同。一氧化氮激活未折叠蛋白和热休克反应以及 MAPK 激酶信号通路,而 H₂O₂刺激 p53 稳定和多聚 (ADP-核糖) 聚合酶 (PARP) 激活,但不能诱导未折叠蛋白或热休克反应或 MAPK 激活。细胞命运决定的控制对压力的形式是有选择性的。H₂O₂介导的β细胞活力降低受 PARP 控制,而对一氧化氮的反应则与 PARP 无关,但与 GAPDH 的核定位有关。这些发现表明,ROS 和 RNS 都能激活 AMPK、诱导 DNA 损伤和降低细胞活力;然而,控制 β 细胞反应的途径对活性物质的类型具有选择性。

相似文献

1
Differential responses of pancreatic β-cells to ROS and RNS.
Am J Physiol Endocrinol Metab. 2013 Mar 15;304(6):E614-22. doi: 10.1152/ajpendo.00424.2012. Epub 2013 Jan 15.
2
β-Cell-selective regulation of gene expression by nitric oxide.
Am J Physiol Regul Integr Comp Physiol. 2024 Jun 1;326(6):R552-R566. doi: 10.1152/ajpregu.00240.2023. Epub 2024 Apr 8.
3
Importance of NADPH oxidase-mediated redox signaling in the detrimental effect of CRP on pancreatic insulin secretion.
Free Radic Biol Med. 2017 Nov;112:200-211. doi: 10.1016/j.freeradbiomed.2017.07.032. Epub 2017 Aug 1.
4
FoxO1 and SIRT1 regulate beta-cell responses to nitric oxide.
J Biol Chem. 2011 Mar 11;286(10):8338-8348. doi: 10.1074/jbc.M110.204768. Epub 2011 Jan 1.
6
Arsenite-induced ROS/RNS generation causes zinc loss and inhibits the activity of poly(ADP-ribose) polymerase-1.
Free Radic Biol Med. 2013 Aug;61:249-56. doi: 10.1016/j.freeradbiomed.2013.04.019. Epub 2013 Apr 18.
7
Peroxynitrite contributes to arsenic-induced PARP-1 inhibition through ROS/RNS generation.
Toxicol Appl Pharmacol. 2019 Sep 1;378:114602. doi: 10.1016/j.taap.2019.114602. Epub 2019 May 29.
8
A systematic review of p53 regulation of oxidative stress in skeletal muscle.
Redox Rep. 2018 Dec;23(1):100-117. doi: 10.1080/13510002.2017.1416773. Epub 2018 Jan 3.

引用本文的文献

1
'Oxidative stress'-A new target in the management of diabetes mellitus.
J Family Med Prim Care. 2023 Nov;12(11):2552-2557. doi: 10.4103/jfmpc.jfmpc_2249_21. Epub 2023 Nov 21.
2
The Beneficial Effects of Chinese Herbal Monomers on Ameliorating Diabetic Cardiomyopathy via Nrf2 Signaling.
Oxid Med Cell Longev. 2022 May 24;2022:3959390. doi: 10.1155/2022/3959390. eCollection 2022.
3
Cytokine and Nitric Oxide-Dependent Gene Regulation in Islet Endocrine and Nonendocrine Cells.
Function (Oxf). 2021 Dec 1;3(1):zqab063. doi: 10.1093/function/zqab063. eCollection 2022.
4
Single-cell RNA sequencing of mouse islets exposed to proinflammatory cytokines.
Life Sci Alliance. 2021 Apr 21;4(6). doi: 10.26508/lsa.202000949. Print 2021 Jun.
5
Regulation of ATR-dependent DNA damage response by nitric oxide.
J Biol Chem. 2021 Jan-Jun;296:100388. doi: 10.1016/j.jbc.2021.100388. Epub 2021 Feb 7.
6
Inhibition of oxidative metabolism by nitric oxide restricts EMCV replication selectively in pancreatic beta-cells.
J Biol Chem. 2020 Dec 25;295(52):18189-18198. doi: 10.1074/jbc.RA120.015893. Epub 2020 Oct 25.
7
Inhibition of mitochondrial oxidative metabolism attenuates EMCV replication and protects β-cells from virally mediated lysis.
J Biol Chem. 2020 Dec 4;295(49):16655-16664. doi: 10.1074/jbc.RA120.014851. Epub 2020 Sep 24.
8
Can insulin secreting pancreatic β-cells provide novel insights into the metabolic regulation of the DNA damage response?
Biochem Pharmacol. 2020 Jun;176:113907. doi: 10.1016/j.bcp.2020.113907. Epub 2020 Mar 12.
9
The Role of MicroRNAs in Diabetes-Related Oxidative Stress.
Int J Mol Sci. 2019 Oct 31;20(21):5423. doi: 10.3390/ijms20215423.
10
Braving the Element: Pancreatic β-Cell Dysfunction and Adaptation in Response to Arsenic Exposure.
Front Endocrinol (Lausanne). 2019 Jun 14;10:344. doi: 10.3389/fendo.2019.00344. eCollection 2019.

本文引用的文献

1
Cytokine-mediated β-cell damage in PARP-1-deficient islets.
Am J Physiol Endocrinol Metab. 2012 Jul 15;303(2):E172-9. doi: 10.1152/ajpendo.00055.2012. Epub 2012 Apr 24.
2
ROS-induced DNA damage and PARP-1 are required for optimal induction of starvation-induced autophagy.
Cell Res. 2012 Jul;22(7):1181-98. doi: 10.1038/cr.2012.70. Epub 2012 Apr 24.
3
On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1.
Genes Dev. 2012 Mar 1;26(5):417-32. doi: 10.1101/gad.183509.111.
4
Active DNA demethylation by Gadd45 and DNA repair.
Trends Cell Biol. 2012 Apr;22(4):220-7. doi: 10.1016/j.tcb.2012.01.002. Epub 2012 Feb 15.
5
IRE1-dependent activation of AMPK in response to nitric oxide.
Mol Cell Biol. 2011 Nov;31(21):4286-97. doi: 10.1128/MCB.05668-11. Epub 2011 Sep 6.
6
FoxO1 and SIRT1 regulate beta-cell responses to nitric oxide.
J Biol Chem. 2011 Mar 11;286(10):8338-8348. doi: 10.1074/jbc.M110.204768. Epub 2011 Jan 1.
7
Reactive oxygen species and uncoupling protein 2 in pancreatic β-cell function.
Diabetes Obes Metab. 2010 Oct;12 Suppl 2:141-8. doi: 10.1111/j.1463-1326.2010.01269.x.
8
PARP inhibition: PARP1 and beyond.
Nat Rev Cancer. 2010 Apr;10(4):293-301. doi: 10.1038/nrc2812. Epub 2010 Mar 4.
9
Reactive oxygen species, cellular redox systems, and apoptosis.
Free Radic Biol Med. 2010 Mar 15;48(6):749-62. doi: 10.1016/j.freeradbiomed.2009.12.022. Epub 2010 Jan 4.
10
AMP-activated protein kinase attenuates nitric oxide-induced beta-cell death.
J Biol Chem. 2010 Jan 29;285(5):3191-200. doi: 10.1074/jbc.M109.047365. Epub 2009 Nov 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验