文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

p53 调控骨骼肌氧化应激的系统评价

A systematic review of p53 regulation of oxidative stress in skeletal muscle.

机构信息

a School of Kinesiology and Health Sciences , York University , Toronto , Canada.

出版信息

Redox Rep. 2018 Dec;23(1):100-117. doi: 10.1080/13510002.2017.1416773. Epub 2018 Jan 3.


DOI:10.1080/13510002.2017.1416773
PMID:29298131
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6748683/
Abstract

BACKGROUND: p53 is a tumor suppressor protein involved in regulating a wide array of signaling pathways. The role of p53 in the cell is determined by the type of imposed oxidative stress, its intensity and duration. The last decade of research has unravelled a dual nature in the function of p53 in mediating the oxidative stress burden. However, this is dependent on the specific properties of the applied stress and thus requires further analysis. METHODS: A systematic review was performed following an electronic search of Pubmed, Google Scholar, and ScienceDirect databases. Articles published in the English language between January 1, 1990 and March 1, 2017 were identified and isolated based on the analysis of p53 in skeletal muscle in both animal and cell culture models. RESULTS: Literature was categorized according to the modality of imposed oxidative stress including exercise, diet modification, exogenous oxidizing agents, tissue manipulation, irradiation, and hypoxia. With low to moderate levels of oxidative stress, p53 is involved in activating pathways that increase time for cell repair, such as cell cycle arrest and autophagy, to enhance cell survival. However, with greater levels of stress intensity and duration, such as with irradiation, hypoxia, and oxidizing agents, the role of p53 switches to facilitate increased cellular stress levels by initiating DNA fragmentation to induce apoptosis, thereby preventing aberrant cell proliferation. CONCLUSION: Current evidence confirms that p53 acts as a threshold regulator of cellular homeostasis. Therefore, within each modality, the intensity and duration are parameters of the oxidative stressor that must be analyzed to determine the role p53 plays in regulating signaling pathways to maintain cellular health and function in skeletal muscle. ABBREVIATIONS: Acadl: acyl-CoA dehydrogenase, long chain; Acadm: acyl-CoA dehydrogenase, C-4 to C-12 straight chain; AIF: apoptosis-inducing factor; Akt: protein kinase B (PKB); AMPK: AMP-activated protein kinase; ATF-4: activating transcription factor 4; ATM: ATM serine/threonine kinase; Bax: BCL2 associated X, apoptosis regulator; Bcl-2: B cell Leukemia/Lymphoma 2 apoptosis regulator; Bhlhe40: basic helix-loop-helix family member e40; BH3: Borane; Bim: bcl-2 interacting mediator of cell death; Bok: Bcl-2 related ovarian killer; COX-IV: cytochrome c oxidase IV; cGMP: Cyclic guanosine monophosphate; c-myc: proto-oncogene protein; Cpt1b: carnitine palmitoyltransferase 1B; Dr5: death receptor 5; eNOS: endothelial nitric oxide synthase; ERK: extracellular regulated MAP kinase; Fas: Fas Cell surface death receptor; FDXR: Ferredoxin Reductase; FOXO3a: forkhead box O3; Gadd45a: growth arrest and DNA damage-inducible 45 alpha; GLS2: glutaminase 2; GLUT 1 and 4: glucose transporter 1(endothelial) and 4 (skeletal muscle); GSH: Glutathione; Hes1: hes family bHLH transcription factor 1; Hey1: hes related family bHLH transcription factor with YRPW motif 1; HIFI-α: hypoxia-inducible factor 1, α-subunit; HK2: Hexokinase 2; HSP70: Heat Shock Protein 70; HO: Hydrogen Peroxide; Id2: inhibitor of DNA-binding 2; IGF-1-BP3: Insulin-like growth factor binding protein 3; IL-1β: Interleukin 1 beta; iNOS: inducible nitric oxide synthase; IRS-1: Insulin receptor substrate 1; JNK: c-Jun N-terminal kinases; LY-83583: 6-anilino-5,8-quinolinedione; inhibitor of soluble guanylate cyclase and of cGMP production; Mdm 2/ 4: Mouse double minute 2 homolog (mouse) Mdm4 (humans); mtDNA: mitochondrial DNA; MURF1: Muscle RING-finger protein-1; MyoD: Myogenic differentiation 1; MyoG: myogenin; Nanog: Nanog homeobox; NF-kB: Nuclear factor-κB; NO: nitric oxide; NoxA: phorbol-12-myristate-13-acetate-induced protein 1 (Pmaip1); NRF-1: nuclear respiratory factor 1; Nrf2: Nuclear factor erythroid 2-related factor 2; P21: Cdkn1a cyclin-dependent kinase inhibitor 1A (P21); P38 MAPK: mitogen-activated protein kinases; p53R2: p53 inducible ribonucleotide reductase gene; P66Shc: src homology 2 domain-containing transforming protein C1; PERP: p53 apoptosis effector related to PMP-22; PGC-1α: Peroxisome proliferator-activated receptor gamma coactivator 1-alpha; PGM: phosphoglucomutase; PI3K: Phosphatidylinositol-4,5-bisphosphate 3-kinase; PKCβ: protein kinase c beta; PTEN: phosphatase and tensin homolog; PTIO: 2-phenyl-4, 4, 5, 5,-tetramethylimidazoline-1-oxyl 3-oxide (PTIO) has been used as a nitric oxide (NO) scavenger; Puma: The p53 upregulated modulator of apoptosis; PW1: paternally expressed 3 (Peg3); RNS: Reactive nitrogen species; SIRT1: sirtuin 1; SCO2: cytochrome c oxidase assembly protein; SOD2: superoxide dismutase 2; Tfam: transcription factor A mitochondrial; TIGAR: Trp53 induced glycolysis repulatory phosphatase; TNF-a: tumor necrosis factor a; TRAF2: TNF receptor associated factor 2; TRAIL: type II transmembrane protein.

摘要

背景:p53 是一种参与调节广泛信号通路的肿瘤抑制蛋白。p53 在细胞中的作用取决于所施加的氧化应激的类型、其强度和持续时间。过去十年的研究揭示了 p53 在介导氧化应激负担中的双重性质。然而,这取决于所应用的应激的具体特性,因此需要进一步分析。

方法:通过电子搜索 Pubmed、Google Scholar 和 ScienceDirect 数据库,进行了系统评价。根据在动物和细胞培养模型中研究骨骼肌中的 p53 分析,确定并分离了 1990 年 1 月 1 日至 2017 年 3 月 1 日期间发表的以英文撰写的文章。

结果:文献根据施加的氧化应激模式进行分类,包括运动、饮食改变、外源性氧化剂、组织操作、辐照和缺氧。在低至中等水平的氧化应激下,p53 参与激活增加细胞修复时间的途径,如细胞周期停滞和自噬,以增强细胞存活。然而,在更大的应激强度和持续时间下,如辐照、缺氧和氧化剂,p53 的作用转变为通过启动 DNA 片段化诱导细胞凋亡来促进细胞应激水平的增加,从而防止异常细胞增殖。

结论:目前的证据证实,p53 作为细胞内稳态的阈值调节因子。因此,在每种模式下,强度和持续时间都是氧化应激源的参数,必须进行分析,以确定 p53 在调节信号通路以维持骨骼肌细胞健康和功能方面所起的作用。

缩写词:Acadl:酰基辅酶 A 脱氢酶,长链;Acadm:酰基辅酶 A 脱氢酶,C-4 至 C-12 直链;AIF:凋亡诱导因子;Akt:蛋白激酶 B(PKB);AMPK:AMP 激活的蛋白激酶;ATF-4:激活转录因子 4;ATM:ATM 丝氨酸/苏氨酸激酶;Bax:BCL2 相关 X,凋亡调节剂;Bcl-2:B 细胞白血病/淋巴瘤 2 凋亡调节剂;Bhlhe40:碱性螺旋-环-螺旋家族成员 e40;BH3:硼烷;Bim:BCL2 相互作用的细胞死亡介体;Bok:Bcl-2 相关卵巢杀伤因子;COX-IV:细胞色素 c 氧化酶 IV;cGMP:环鸟苷单磷酸;c-myc:原癌基因蛋白;Cpt1b:肉碱棕榈酰转移酶 1B;Dr5:死亡受体 5;eNOS:内皮型一氧化氮合酶;ERK:细胞外调节 MAP 激酶;Fas:Fas 细胞表面死亡受体;FDXR:铁氧还蛋白还原酶;FOXO3a:叉头框 O3;Gadd45a:生长停滞和 DNA 损伤诱导 45 alpha;GLS2:谷氨酰胺酶 2;GLUT1 和 4:葡萄糖转运蛋白 1(内皮)和 4(骨骼肌);GSH:谷胱甘肽;Hes1: hes 家族 bHLH 转录因子 1;Hey1:hes 相关家族 bHLH 转录因子与 YRPW 基序 1;HIFI-α:缺氧诱导因子 1,α-亚单位;HK2:己糖激酶 2;HSP70:热休克蛋白 70;HO:过氧化氢;Id2:DNA 结合抑制因子 2;IGF-1-BP3:胰岛素样生长因子结合蛋白 3;IL-1β:白细胞介素 1β;iNOS:诱导型一氧化氮合酶;IRS-1:胰岛素受体底物 1;JNK:c-Jun N-末端激酶;LY-83583:6-苯胺-5,8-喹啉二酮;可溶性鸟苷酸环化酶和 cGMP 产生的抑制剂;Mdm2/4:小鼠双微体 2 同源物(小鼠)Mdm4(人类);mtDNA:线粒体 DNA;MURF1:肌肉环指蛋白 1;MyoD:肌分化 1;MyoG:肌生成素;Nanog:Nanog 同源盒;NF-kB:核因子-κB;NO:一氧化氮;NoxA:佛波醇 12-肉豆蔻酸 13-乙酸酯诱导蛋白 1(Pmaip1);NRF-1:核呼吸因子 1;Nrf2:核因子红细胞 2 相关因子 2;P21:Cdkn1a 细胞周期蛋白依赖性激酶抑制剂 1A(P21);P38 MAPK:丝裂原激活的蛋白激酶;p53R2:p53 诱导的核苷酸还原酶基因;P66Shc:Src 同源 2 结构域包含转化蛋白 C1;PERP:p53 凋亡效应物与 PMP-22 相关;PGC-1α:过氧化物酶体增殖物激活受体 γ 共激活因子 1-α;PGM:磷酸葡萄糖变位酶;PI3K:磷脂酰肌醇-4,5-双磷酸 3-激酶;PKCβ:蛋白激酶 Cβ;PTEN:磷酸酶和张力蛋白同源物;PTIO:2-苯基-4,4,5,5,-四甲基咪唑啉-1-氧-3-氧化物(PTIO)已被用作一氧化氮(NO)清除剂;Puma:p53 上调的凋亡调节剂;PW1:父系表达 3(Peg3);RNS:活性氮物种;SIRT1:沉默调节蛋白 1;SCO2:细胞色素 c 氧化酶组装蛋白;SOD2:超氧化物歧化酶 2;Tfam:线粒体转录因子 A;TIGAR:Trp53 诱导的糖酵解调节磷酸酶;TNF-a:肿瘤坏死因子 a;TRAF2:肿瘤坏死因子受体相关因子 2;TRAIL:II 型跨膜蛋白。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69f0/6748683/7305701ca7f6/YRER_A_1416773_F0003_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69f0/6748683/dc6812bc7b9f/YRER_A_1416773_F0001_OB.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69f0/6748683/ca2463ea7d75/YRER_A_1416773_F0002_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69f0/6748683/7305701ca7f6/YRER_A_1416773_F0003_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69f0/6748683/dc6812bc7b9f/YRER_A_1416773_F0001_OB.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69f0/6748683/ca2463ea7d75/YRER_A_1416773_F0002_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69f0/6748683/7305701ca7f6/YRER_A_1416773_F0003_OC.jpg

相似文献

[1]
A systematic review of p53 regulation of oxidative stress in skeletal muscle.

Redox Rep. 2018-1-3

[2]
Copper metabolism in cell death and autophagy.

Autophagy. 2023-8

[3]
A comprehensive and systematic review on potential anticancer activities of eugenol: From pre-clinical evidence to molecular mechanisms of action.

Phytomedicine. 2022-12

[4]
Systemic treatments for metastatic cutaneous melanoma.

Cochrane Database Syst Rev. 2018-2-6

[5]
Integrative RNA profiling of TBEV-infected neurons and astrocytes reveals potential pathogenic effectors.

Comput Struct Biotechnol J. 2022-5-30

[6]
The effect of immunomodulatory properties of naringenin on the inhibition of inflammation and oxidative stress in autoimmune disease models: a systematic review and meta-analysis of preclinical evidence.

Inflamm Res. 2022-11

[7]
A systematic review and economic evaluation of epoetin alpha, epoetin beta and darbepoetin alpha in anaemia associated with cancer, especially that attributable to cancer treatment.

Health Technol Assess. 2007-4

[8]
Autophagy in the physiological endometrium and cancer.

Autophagy. 2021-5

[9]
Anticancer potential of eugenol in hepatocellular carcinoma through modulation of oxidative stress, inflammation, apoptosis, and proliferation mechanisms.

Discov Oncol. 2025-6-12

[10]
Umbelliferone attenuates diabetic sarcopenia by modulating mitochondrial quality and the ubiquitin-proteasome system.

Phytomedicine. 2025-8

引用本文的文献

[1]
Exploring the mechanism of Danshen in treating Kawasaki disease through network pharmacology and molecular docking approaches.

Medicine (Baltimore). 2025-8-29

[2]
The ALDH2/PolG2 axis enhances mitochondrial biogenesis via transcriptional regulation of Nrf2 and promotes chemotherapy resistance in acute myeloid leukaemia.

Cell Death Dis. 2025-8-13

[3]
Lactoferrin combined with Coenzyme Q10 ameliorate sarcopenia in an aging mouse model induced by D-galactose.

PLoS One. 2025-6-26

[4]
Validation of Senescence of the Role of ATM/P53 Pathway in Myocardial Senescence in Mice with Sepsis.

Infect Drug Resist. 2025-4-19

[5]
Phosphatidate phosphatase Lipin1 alters mitochondria-associated endoplasmic reticulum membranes (MAMs) homeostasis: effects which contribute to the development of diabetic encephalopathy.

J Neuroinflammation. 2025-4-18

[6]
Integrated In-silico and In-vivo Assessments of Betaine's Effect on the Hypothalamic-Pituitary-Testicular (HPT) Axis in Fluoride-Treated Rats.

Biol Trace Elem Res. 2025-2-5

[7]
MicroRNA, Myostatin, and Metabolic Rate Depression: Skeletal Muscle Atrophy Resistance in Hibernating .

Cells. 2024-12-16

[8]
Research Progress on the Anti-Liver Cancer Mechanism and Toxicity of Rhubarb Anthraquinone.

Drug Des Devel Ther. 2024-12-18

[9]
Design, Synthesis, and Molecular Docking of Quinazolines Bearing Caffeoyl Moiety for Targeting of PGK1/PKM2/STAT3 Signaling Pathway in the Human Breast Cancer.

Curr Pharm Des. 2025

[10]
Post-senescence reproductive rebound in Daphnia associated with reversal of age-related transcriptional changes.

Geroscience. 2025-4

本文引用的文献

[1]
Control of DNA integrity in skeletal muscle under physiological and pathological conditions.

Cell Mol Life Sci. 2017-10

[2]
Sprint-interval but not continuous exercise increases PGC-1α protein content and p53 phosphorylation in nuclear fractions of human skeletal muscle.

Sci Rep. 2017-3-10

[3]
iNOS as a Driver of Inflammation and Apoptosis in Mouse Skeletal Muscle after Burn Injury: Possible Involvement of Sirt1 S-Nitrosylation-Mediated Acetylation of p65 NF-κB and p53.

PLoS One. 2017-1-18

[4]
Altered S-nitrosylation of p53 is responsible for impaired antioxidant response in skeletal muscle during aging.

Aging (Albany NY). 2016-12-20

[5]
Integrated biological responses and tissue-specific expression of p53 and ras genes in marine mussels following exposure to benzo(α)pyrene and C60 fullerenes, either alone or in combination.

Mutagenesis. 2017-1

[6]
Mitochondrial adaptations to high-volume exercise training are rapidly reversed after a reduction in training volume in human skeletal muscle.

FASEB J. 2016-10

[7]
17β-Estradiol Protects Skeletal Myoblasts From Apoptosis Through p53, Bcl-2, and FoxO Families.

J Cell Biochem. 2017-1

[8]
Acute Endurance Exercise Induces Nuclear p53 Abundance in Human Skeletal Muscle.

Front Physiol. 2016-4-26

[9]
Exercise-induced mitochondrial p53 repairs mtDNA mutations in mutator mice.

Skelet Muscle. 2016-1-31

[10]
Hyperglycemic Stress and Carbon Stress in Diabetic Glucotoxicity.

Aging Dis. 2016-1-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索