Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
J Biol Chem. 2021 Jan-Jun;296:100388. doi: 10.1016/j.jbc.2021.100388. Epub 2021 Feb 7.
We have shown that nitric oxide limits ataxia-telangiectasia mutated signaling by inhibiting mitochondrial oxidative metabolism in a β-cell selective manner. In this study, we examined the actions of nitric oxide on a second DNA damage response transducer kinase, ataxia-telangiectasia and Rad3-related protein (ATR). In β-cells and non-β-cells, nitric oxide activates ATR signaling by inhibiting ribonucleotide reductase; however, when produced at inducible nitric oxide synthase-derived (low micromolar) levels, nitric oxide impairs ATR signaling in a β-cell selective manner. The inhibitory actions of nitric oxide are associated with impaired mitochondrial oxidative metabolism and lack of glycolytic compensation that result in a decrease in β-cell ATP. Like nitric oxide, inhibitors of mitochondrial respiration reduce ATP levels and limit ATR signaling in a β-cell selective manner. When non-β-cells are forced to utilize mitochondrial oxidative metabolism for ATP generation, their response is more like β-cells, as nitric oxide and inhibitors of mitochondrial respiration attenuate ATR signaling. These studies support a dual role for nitric oxide in regulating ATR signaling. Nitric oxide activates ATR in all cell types examined by inhibiting ribonucleotide reductase, and in a β-cell selective manner, inducible nitric oxide synthase-derived levels of nitric oxide limit ATR signaling by attenuating mitochondrial oxidative metabolism and depleting ATP.
我们已经证明,一氧化氮通过以β细胞选择性的方式抑制线粒体氧化代谢来限制共济失调毛细血管扩张突变信号。在这项研究中,我们研究了一氧化氮对第二种 DNA 损伤反应转导激酶——共济失调毛细血管扩张和 Rad3 相关蛋白 (ATR) 的作用。在β细胞和非β细胞中,一氧化氮通过抑制核昔酸还原酶来激活 ATR 信号;然而,当以诱导型一氧化氮合酶衍生的(低微摩尔)水平产生时,一氧化氮以β细胞选择性的方式损害 ATR 信号。一氧化氮的抑制作用与受损的线粒体氧化代谢和缺乏糖酵解补偿有关,导致β细胞 ATP 减少。与一氧化氮类似,线粒体呼吸抑制剂以β细胞选择性的方式降低 ATP 水平并限制 ATR 信号。当非β细胞被迫利用线粒体氧化代谢生成 ATP 时,它们的反应更类似于β细胞,因为一氧化氮和线粒体呼吸抑制剂会减弱 ATR 信号。这些研究支持一氧化氮在调节 ATR 信号中的双重作用。一氧化氮通过抑制核昔酸还原酶激活所有检查的细胞类型中的 ATR,并且以β细胞选择性的方式,诱导型一氧化氮合酶衍生的一氧化氮水平通过减弱线粒体氧化代谢和耗尽 ATP 来限制 ATR 信号。