Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, USA.
J Expo Sci Environ Epidemiol. 2013 Jul;23(4):442-9. doi: 10.1038/jes.2012.120. Epub 2013 Jan 16.
Chronic exposure to arsenic (As) in food and water is a significant public health problem. Person-specific aggregate exposure is difficult to collect and modeling based on limited food As residue databases is of uncertain reliability. Two cross-sectional population exposure studies, the National Human Exposure Assessment Survey-Arizona and Arizona Border Survey, had a combined total of 252 subjects with diet, water, and urinary As data. Total As was measured in 24-h duplicate diet samples and modeled using 24-h diet diaries in conjunction with several published food surveys of As. Two-stage regression was used to assess the effects of dietary As on urinary total As (uAs): (1) generalized linear mixed models of uAs above versus below the limit of detection (LOD); and (2) restricted models limited to those subjects with uAs>LOD, using bootstrap sampling and mixed models adjusted for age, sex, body mass index, ethnicity, current smoking, and As intake from drinking and cooking water. In restricted models, measured and modeled estimates were significant predictors of uAs. Modeled dietary As based on Total Diet Study mean residues greatly underestimated the dietary intake. In households with tap water As ≤10 p.p.b., over 93% of total arsenic exposure was attributable to diet.
慢性暴露于食物和水中的砷(As)是一个重大的公共卫生问题。个人综合暴露情况难以收集,且基于有限的食物砷残留数据库进行建模的可靠性存在不确定性。两项横断面人群暴露研究,即国家人类暴露评估调查-亚利桑那州和亚利桑那州边境调查,共有 252 名研究对象提供了饮食、水和尿砷数据。总砷在 24 小时重复饮食样本中进行测量,并使用 24 小时饮食日记结合几项已发表的食物砷调查进行建模。两阶段回归用于评估饮食砷对尿总砷(uAs)的影响:(1)检测限(LOD)以上和以下 uAs 的广义线性混合模型;(2)仅限于 uAs>LOD 的研究对象的受限模型,使用自举抽样和混合模型调整年龄、性别、体重指数、种族、当前吸烟和饮用水及烹饪水中的砷摄入量。在受限模型中,测量和建模估计值是 uAs 的显著预测因子。基于总膳食研究平均残留量的模型化膳食砷摄入量大大低估了饮食摄入量。在自来水中砷含量≤10 ppb 的家庭中,超过 93%的总砷暴露归因于饮食。
J Expo Sci Environ Epidemiol. 2013-1-16
J Expo Sci Environ Epidemiol. 2016-9
J Expo Sci Environ Epidemiol. 2013-7-17
J Expo Anal Environ Epidemiol. 2003-5
J Expo Sci Environ Epidemiol. 2013-2-27
Cardiovasc Drugs Ther. 2023-12
Environ Res. 2021-4
Environ Res. 2020-7-17
J Expo Sci Environ Epidemiol. 2018-5-24
Environ Health Perspect. 2016-7
Int J Environ Res Public Health. 2012-3-26
J Expo Sci Environ Epidemiol. 2011-8-31
J Environ Monit. 2011-2
Environ Sci Technol. 2010-6-15
Int J Hyg Environ Health. 2010-4-28
Environ Health Perspect. 2010-3
Nutr Res Rev. 1998-12