National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
J Expo Sci Environ Epidemiol. 2013 May-Jun;23(3):241-7. doi: 10.1038/jes.2012.118. Epub 2013 Jan 16.
Central-site monitors do not account for factors such as outdoor-to-indoor transport and human activity patterns that influence personal exposures to ambient fine-particulate matter (PM(2.5)). We describe and compare different ambient PM(2.5) exposure estimation approaches that incorporate human activity patterns and time-resolved location-specific particle penetration and persistence indoors. Four approaches were used to estimate exposures to ambient PM(2.5) for application to the New Jersey Triggering of Myocardial Infarction Study. These include: Tier 1, central-site PM(2.5) mass; Tier 2A, the Stochastic Human Exposure and Dose Simulation (SHEDS) model using literature-based air exchange rates (AERs); Tier 2B, the Lawrence Berkeley National Laboratory (LBNL) Aerosol Penetration and Persistence (APP) and Infiltration models; and Tier 3, the SHEDS model where AERs were estimated using the LBNL Infiltration model. Mean exposure estimates from Tier 2A, 2B, and 3 exposure modeling approaches were lower than Tier 1 central-site PM(2.5) mass. Tier 2A estimates differed by season but not across the seven monitoring areas. Tier 2B and 3 geographical patterns appeared to be driven by AERs, while seasonal patterns appeared to be due to variations in PM composition and time activity patterns. These model results demonstrate heterogeneity in exposures that are not captured by the central-site monitor.
中心站点监测器无法考虑到影响人体对环境细颗粒物(PM2.5)暴露的因素,如室内外传输和人体活动模式。我们描述并比较了不同的环境 PM2.5 暴露评估方法,这些方法结合了人体活动模式以及室内实时、特定位置的颗粒渗透和持久性。为应用于新泽西州心肌梗死触发研究,我们使用了四种方法来估计环境 PM2.5 暴露情况。这些方法包括:第 1 层,中心站点 PM2.5 质量;第 2A 层,使用基于文献的空气交换率(AERs)的随机人体暴露和剂量模拟(SHEDS)模型;第 2B 层,劳伦斯伯克利国家实验室(LBNL)气溶胶渗透和持久性(APP)和渗透模型;以及第 3 层,使用 LBNL 渗透模型估计 AERs 的 SHEDS 模型。来自第 2A、2B 和 3 层暴露建模方法的平均暴露估计值低于第 1 层中心站点 PM2.5 质量。第 2A 层的估计值因季节而异,但在七个监测区域之间没有差异。第 2B 和 3 层的地理模式似乎是由 AERs 驱动的,而季节性模式似乎是由于 PM 组成和时间活动模式的变化所致。这些模型结果表明,中心站点监测器无法捕捉到暴露的异质性。