Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
Phys Chem Chem Phys. 2013 Apr 21;15(15):5345-54. doi: 10.1039/c3cp43882a.
Super-resolution far-field imaging has recently emerged as a novel strategy for imaging interactions between plasmonic nanostructures and single molecules with spatial resolution <5 nm. In these experiments, the emission centroid of a diffraction-limited spot is modeled as a two-dimensional Gaussian, allowing the position of an emitter to be determined with nanoscale precision. In this perspective, we describe the principles of super-resolution far-field imaging and then highlight its application to several different problems in plasmonics, including surface-enhanced fluorescence of ligands bound to nanoparticle surfaces, nanoparticle-mediated catalysis, and mapping electromagnetic hot spots. In all cases, the complex coupling between molecular emission and plasmon modes of the underlying nanostructure must be considered. While this complicates the interpretation of super-resolution images of plasmonic systems, the coupling also opens new doors for understanding the fundamental interactions between molecules and plasmonic nanostructures.
超分辨率远场成像是一种新兴的策略,用于对等离子体纳米结构与单个分子之间的相互作用进行成像,其空间分辨率小于 5nm。在这些实验中,衍射极限光斑的发射质心被建模为二维高斯分布,从而可以以纳米级的精度确定发射器的位置。在本观点中,我们描述了超分辨率远场成像的原理,然后强调了它在等离子体学中的几个不同问题中的应用,包括结合在纳米粒子表面上的配体的表面增强荧光、纳米粒子介导的催化作用,以及电磁热点的映射。在所有情况下,都必须考虑分子发射与基础纳米结构的等离子体模式之间的复杂耦合。虽然这增加了等离子体系统的超分辨率图像解释的复杂性,但这种耦合也为理解分子和等离子体纳米结构之间的基本相互作用开辟了新的途径。