Behav Sci Law. 2013 Jan-Feb;31(1):141-53. doi: 10.1002/bsl.2047. Epub 2013 Jan 16.
Users of commonly employed actuarial risk assessment instruments (ARAIs) hope to generate numerical probability statements about risk; however, ARAI manuals often do not explicitly report data that are essential for understanding the classification accuracy of the instruments. In addition, ARAI manuals often contain data that have the potential for misinterpretation. The authors of the present article address the accurate generation of probability statements. First, they illustrate how the reporting of numerical probability statements based on proportions rather than predictive values can mislead users of ARAIs. Next, they report essential test characteristics that, to date, have gone largely unreported in ARAI manuals. Then they discuss a graphing method that can enhance the practice of clinicians who communicate risk via numerical probability statements. After the authors review several strategies for selecting optimal cut-off scores, they show how the graphing method can be used to estimate positive predictive values for each cut-off score of commonly used ARAIs, across all possible base rates. They also show how the graphing method can be used to estimate base rates of violent recidivism in local samples.
常用精算风险评估工具(ARAIs)的使用者希望生成关于风险的数值概率陈述;然而,ARAIs 手册通常没有明确报告对于理解工具的分类准确性至关重要的数据。此外,ARAIs 手册中通常包含可能被误解的数据。本文的作者讨论了如何准确地生成概率陈述。首先,他们说明了基于比例而不是预测值报告数值概率陈述可能会误导 ARAIs 的使用者。接下来,他们报告了迄今为止在 ARAIs 手册中基本未报告的重要测试特征。然后,他们讨论了一种图形化方法,该方法可以增强通过数值概率陈述来传达风险的临床医生的实践。在作者审查了几种选择最佳截断分数的策略之后,他们展示了如何使用图形化方法来估计常用 ARAIs 的每个截断分数的阳性预测值,涵盖所有可能的基础率。他们还展示了如何使用图形化方法来估计本地样本中暴力累犯的基础率。