ARC Centre of Excellence for Functional Nanomaterials, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia.
ChemSusChem. 2013 Feb;6(2):291-8. doi: 10.1002/cssc.201200702. Epub 2013 Jan 15.
This work presents insight into the self-photorechargeability of WO(3), whereby the intercalation of positive alkali cations is accompanied by the simultaneous storage of photo-excited electrons. The cyclic voltammetry studies verify the photo-assisted intercalation and de-intercalation of Na(+) and K(+) from the flower structured WO(3). A storage capacity of up to 0.722 C cm(-2) can be achieved in a saturated (0.68 M) K(2)SO(4) electrolyte solution. However, the best photo recharge-discharge stability of the electrode are observed at a lower (0.1 M) cation concentration. At high electrolyte concentrations, the intercalated cations are firmly trapped, as indicated by the structural modifications observed in Raman analysis, resulting in much less photocharging and discharging abilities in subsequent cycles. The study also shows that the stored electrons can be successfully used to generate H(2) with 100 % faradaic efficiency in the absence of light.
本工作深入研究了 WO(3) 的自光电再充电能力,其中,正碱金属阳离子的嵌入伴随着光激发电子的同时存储。循环伏安法研究验证了花状 WO(3) 中 Na(+) 和 K(+) 的光辅助嵌入和脱嵌。在饱和(0.68 M)K(2)SO(4)电解质溶液中,可实现高达 0.722 C cm(-2)的存储容量。然而,在较低的(0.1 M)阳离子浓度下,观察到电极具有最佳的光电再充电-放电稳定性。在高电解质浓度下,嵌入的阳离子被牢固地捕获,如拉曼分析中观察到的结构修饰所表明的,导致在后续循环中光电充电和放电能力大大降低。该研究还表明,在没有光的情况下,存储的电子可以成功地用于以 100%的法拉第效率产生 H(2)。