Suppr超能文献

III 层神经元控制未成熟大脑皮层中的同步波。

Layer III neurons control synchronized waves in the immature cerebral cortex.

机构信息

Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan.

出版信息

J Neurosci. 2013 Jan 16;33(3):987-1001. doi: 10.1523/JNEUROSCI.2522-12.2013.

Abstract

Correlated spiking activity prevails in immature cortical networks and is believed to contribute to neuronal circuit maturation; however, its spatiotemporal organization is not fully understood. Using wide-field calcium imaging from acute whole-brain slices of rat pups on postnatal days 1-6, we found that correlated spikes were initiated in the anterior part of the lateral entorhinal cortex and propagated anteriorly to the frontal cortex and posteriorly to the medial entorhinal cortex, forming traveling waves that engaged almost the entire cortex. The waves were blocked by ionotropic glutamatergic receptor antagonists but not by GABAergic receptor antagonists. During wave events, glutamatergic and GABAergic synaptic inputs were balanced and induced UP state-like depolarization. Magnified monitoring with cellular resolution revealed that the layer III neurons were first activated when the waves were initiated. Consistent with this finding, layer III contained a larger number of neurons that were autonomously active, even under a blockade of synaptic transmission. During wave propagation, the layer III neurons constituted a leading front of the wave. The waves did not enter the parasubiculum; however, in some cases, they were reflected at the parasubicular border and propagated back in the opposite direction. During this reflection process, the layer III neurons in the medial entorhinal cortex maintained persistent activity. Thus, our data emphasize the role of layer III in early network behaviors and provide insight into the circuit mechanisms through which cerebral cortical networks maturate.

摘要

相关性尖峰活动在不成熟的皮质网络中普遍存在,被认为有助于神经元回路的成熟;然而,其时空组织尚不完全清楚。我们使用新生 1-6 天大鼠急性全脑切片的宽场钙成像,发现相关性尖峰首先在前外侧内嗅皮层的前部开始,并向前传播到额叶皮层,向后传播到内侧内嗅皮层,形成几乎整个皮层都参与的游走波。这些波被离子型谷氨酸能受体拮抗剂阻断,但被 GABA 能受体拮抗剂不阻断。在波事件期间,谷氨酸能和 GABA 能突触输入平衡,并诱导 UP 状态样去极化。用细胞分辨率放大监测显示,当波开始时,第三层神经元首先被激活。与这一发现一致的是,第三层包含更多数量的自主活动神经元,即使在阻断突触传递的情况下也是如此。在波传播过程中,第三层神经元构成了波的前缘。波不会进入副隔区;然而,在某些情况下,它们在副隔区边界处被反射,并以相反的方向传播。在这个反射过程中,内侧内嗅皮层的第三层神经元保持持续的活动。因此,我们的数据强调了第三层在早期网络行为中的作用,并为大脑皮层网络成熟的电路机制提供了深入的了解。

相似文献

1
Layer III neurons control synchronized waves in the immature cerebral cortex.
J Neurosci. 2013 Jan 16;33(3):987-1001. doi: 10.1523/JNEUROSCI.2522-12.2013.
2
Presubicular and parasubicular cortical neurons of the rat: functional separation of deep and superficial neurons in vitro.
J Physiol. 1997 Jun 1;501 ( Pt 2)(Pt 2):387-403. doi: 10.1111/j.1469-7793.1997.387bn.x.
3
Large-scale oscillatory calcium waves in the immature cortex.
Nat Neurosci. 2000 May;3(5):452-9. doi: 10.1038/74823.
5
Ca2+-independent muscarinic excitation of rat medial entorhinal cortex layer V neurons.
Eur J Neurosci. 2003 Dec;18(12):3343-51. doi: 10.1111/j.1460-9568.2003.03050.x.
6
Laminar differences in recurrent excitatory transmission in the rat entorhinal cortex in vitro.
Neuroscience. 2000;99(3):413-22. doi: 10.1016/s0306-4522(00)00225-6.
10
Spontaneous GABAergic postsynaptic currents in Cajal-Retzius cells in neonatal rat cerebral cortex.
Eur J Neurosci. 2001 Apr;13(7):1387-90. doi: 10.1046/j.0953-816x.2001.01514.x.

引用本文的文献

1
A 3D human iPSC-derived multi-cell type neurosphere system to model cellular responses to chronic amyloidosis.
J Neuroinflammation. 2025 Apr 24;22(1):119. doi: 10.1186/s12974-025-03433-3.
2
Reelin Regulates Developmental Desynchronization Transition of Neocortical Network Activity.
Biomolecules. 2024 May 17;14(5):593. doi: 10.3390/biom14050593.
3
Network state transitions during cortical development.
Nat Rev Neurosci. 2024 Aug;25(8):535-552. doi: 10.1038/s41583-024-00824-y. Epub 2024 May 23.
5
KCNQ2 channels regulate the population activity of neonatal GABAergic neurons .
Front Neurol. 2023 Jun 20;14:1207539. doi: 10.3389/fneur.2023.1207539. eCollection 2023.
7
Loss of KCNQ2 or KCNQ3 Leads to Multifocal Time-Varying Activity in the Neonatal Forebrain .
eNeuro. 2021 May 19;8(3). doi: 10.1523/ENEURO.0024-21.2021. Print 2021 May-Jun.
9
Micro Three-Dimensional Neuronal Cultures Generate Developing Cortex-Like Activity Patterns.
Front Neurosci. 2020 Oct 2;14:563905. doi: 10.3389/fnins.2020.563905. eCollection 2020.
10
Up and Down States and Memory Consolidation Across Somatosensory, Entorhinal, and Hippocampal Cortices.
Front Syst Neurosci. 2020 May 8;14:22. doi: 10.3389/fnsys.2020.00022. eCollection 2020.

本文引用的文献

1
Excitatory GABA: How a Correct Observation May Turn Out to be an Experimental Artifact.
Front Pharmacol. 2012 Apr 19;3:65. doi: 10.3389/fphar.2012.00065. eCollection 2012.
2
Traumatic alterations in GABA signaling disrupt hippocampal network activity in the developing brain.
J Neurosci. 2012 Mar 21;32(12):4017-31. doi: 10.1523/JNEUROSCI.5139-11.2012.
4
Synchronized spike waves in immature dentate gyrus networks.
Eur J Neurosci. 2012 Mar;35(5):673-81. doi: 10.1111/j.1460-9568.2012.07995.x. Epub 2012 Feb 15.
5
Locally synchronized synaptic inputs.
Science. 2012 Jan 20;335(6066):353-6. doi: 10.1126/science.1210362.
6
The mechanisms for compression and reflection of cortical waves.
Biol Cybern. 2011 Oct;105(3-4):253-68. doi: 10.1007/s00422-011-0465-3. Epub 2011 Nov 22.
7
Early γ oscillations synchronize developing thalamus and cortex.
Science. 2011 Oct 14;334(6053):226-9. doi: 10.1126/science.1210574.
8
High-speed multineuron calcium imaging using Nipkow-type confocal microscopy.
Curr Protoc Neurosci. 2011 Oct;Chapter 2:Unit 2.14. doi: 10.1002/0471142301.ns0214s57.
9
Propagating waves in human motor cortex.
Front Hum Neurosci. 2011 Apr 25;5:40. doi: 10.3389/fnhum.2011.00040. eCollection 2011.
10
Developmental changes in propagation patterns and transmitter dependence of waves of spontaneous activity in the mouse cerebral cortex.
J Physiol. 2011 May 15;589(Pt 10):2529-41. doi: 10.1113/jphysiol.2010.202382. Epub 2011 Mar 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验