Suppr超能文献

智能手机应用程序在黑色素瘤检测中的诊断准确性。

Diagnostic inaccuracy of smartphone applications for melanoma detection.

机构信息

University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.

出版信息

JAMA Dermatol. 2013 Apr;149(4):422-6. doi: 10.1001/jamadermatol.2013.2382.

Abstract

OBJECTIVE

To measure the performance of smartphone applications that evaluate photographs of skin lesions and provide the user with feedback about the likelihood of malignancy.

DESIGN

Case-control diagnostic accuracy study.

SETTING

Academic dermatology department. PARTICIPANTS AND MATERIALS: Digital clinical images of pigmented cutaneous lesions (60 melanoma and 128 benign control lesions) with a histologic diagnosis rendered by a board-certified dermatopathologist, obtained before biopsy from patients undergoing lesion removal as a part of routine care.

MAIN OUTCOME MEASURES

Sensitivity, specificity, and positive and negative predictive values of 4 smartphone applications designed to aid nonclinician users in determining whether their skin lesion is benign or malignant.

RESULTS

Sensitivity of the 4 tested applications ranged from 6.8% to 98.1%; specificity, 30.4% to 93.7%; positive predictive value, 33.3% to 42.1%; and negative predictive value, 65.4% to 97.0%. The highest sensitivity for melanoma diagnosis was observed for an application that sends the image directly to a board-certified dermatologist for analysis; the lowest, for applications that use automated algorithms to analyze images.

CONCLUSIONS

The performance of smartphone applications in assessing melanoma risk is highly variable, and 3 of 4 smartphone applications incorrectly classified 30% or more of melanomas as unconcerning. Reliance on these applications, which are not subject to regulatory oversight, in lieu of medical consultation can delay the diagnosis of melanoma and harm users.

摘要

目的

评估评估皮肤损伤照片并向用户提供有关恶性可能性的反馈的智能手机应用程序的性能。

设计

病例对照诊断准确性研究。

设置

学术皮肤科。

参与者和材料

带有组织学诊断的色素性皮肤病变的数字临床图像(60 例黑色素瘤和 128 例良性对照病变),这些病变是在活检前从接受常规护理的患者中切除病变时获得的,由经过委员会认证的皮肤科病理学家做出。

主要观察指标

设计用于帮助非临床用户确定其皮肤病变是良性还是恶性的 4 种智能手机应用程序的敏感性、特异性以及阳性和阴性预测值。

结果

4 种测试应用程序的敏感性范围为 6.8%至 98.1%;特异性,30.4%至 93.7%;阳性预测值,33.3%至 42.1%;阴性预测值,65.4%至 97.0%。对于直接将图像发送给经过委员会认证的皮肤科医生进行分析的应用程序,黑色素瘤诊断的敏感性最高;使用自动算法分析图像的应用程序的敏感性最低。

结论

智能手机应用程序在评估黑色素瘤风险方面的性能差异很大,其中 4 种智能手机应用程序中的 3 种错误地将 30%或更多的黑色素瘤归类为不相关。依赖这些不受监管的应用程序而不是医疗咨询可能会延迟黑色素瘤的诊断并伤害用户。

相似文献

3
Diagnostic inaccuracy of smartphone applications for melanoma detection--reply.
JAMA Dermatol. 2013 Jul;149(7):885. doi: 10.1001/jamadermatol.2013.4337.

引用本文的文献

本文引用的文献

2
Smart phones: new clinical tools in oncology?智能手机:肿瘤学领域的新型临床工具?
Lancet Oncol. 2011 May;12(5):429-30. doi: 10.1016/S1470-2045(11)70116-4.
7
Patterns of detection in patients with cutaneous melanoma.皮肤黑色素瘤患者的检测模式。
Cancer. 2000 Jul 15;89(2):342-7. doi: 10.1002/1097-0142(20000715)89:2<342::aid-cncr19>3.0.co;2-p.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验