Suppr超能文献

肿瘤复发与治疗坏死的鉴别:神经肿瘤影像学策略综述。

Differentiating tumor recurrence from treatment necrosis: a review of neuro-oncologic imaging strategies.

机构信息

Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.

出版信息

Neuro Oncol. 2013 May;15(5):515-34. doi: 10.1093/neuonc/nos307. Epub 2013 Jan 16.

Abstract

Differentiating treatment-induced necrosis from tumor recurrence is a central challenge in neuro-oncology. These 2 very different outcomes after brain tumor treatment often appear similarly on routine follow-up imaging studies. They may even manifest with similar clinical symptoms, further confounding an already difficult process for physicians attempting to characterize a new contrast-enhancing lesion appearing on a patient's follow-up imaging. Distinguishing treatment necrosis from tumor recurrence is crucial for diagnosis and treatment planning, and therefore, much effort has been put forth to develop noninvasive methods to differentiate between these disparate outcomes. In this article, we review the latest developments and key findings from research studies exploring the efficacy of structural and functional imaging modalities for differentiating treatment necrosis from tumor recurrence. We discuss the possibility of computational approaches to investigate the usefulness of fine-grained imaging characteristics that are difficult to observe through visual inspection of images. We also propose a flexible treatment-planning algorithm that incorporates advanced functional imaging techniques when indicated by the patient's routine follow-up images and clinical condition.

摘要

区分治疗引起的坏死与肿瘤复发是神经肿瘤学的一个核心挑战。这两种截然不同的脑肿瘤治疗结果在常规随访影像学研究中通常表现相似。它们甚至可能表现出相似的临床症状,这使得本来就很困难的医生对患者随访影像学上出现的新增强病变进行特征描述的过程更加复杂。区分治疗性坏死与肿瘤复发对于诊断和治疗计划至关重要,因此,人们已经投入了大量精力来开发非侵入性方法来区分这些不同的结果。在本文中,我们回顾了探索结构和功能成像方式区分治疗性坏死与肿瘤复发的最新研究进展和关键发现。我们讨论了计算方法的可能性,以研究通过图像视觉检查难以观察到的精细成像特征的有用性。我们还提出了一种灵活的治疗计划算法,当患者的常规随访图像和临床状况提示时,该算法会纳入先进的功能成像技术。

相似文献

1
Differentiating tumor recurrence from treatment necrosis: a review of neuro-oncologic imaging strategies.
Neuro Oncol. 2013 May;15(5):515-34. doi: 10.1093/neuonc/nos307. Epub 2013 Jan 16.
2
Molecular imaging based on differential protein content in differentiating glioma from radiation necrosis.
Neurosurgery. 2011 Jun;68(6):N16-7. doi: 10.1227/01.neu.0000398208.56326.19.
3
Differentiating brain radionecrosis from tumour recurrence: a role for contrast-enhanced ultrasound?
Acta Neurochir (Wien). 2017 Dec;159(12):2405-2408. doi: 10.1007/s00701-017-3306-x. Epub 2017 Sep 5.
4
Distinguishing glioma recurrence from treatment effect after radiochemotherapy and immunotherapy.
Neurosurg Clin N Am. 2010 Jan;21(1):181-6. doi: 10.1016/j.nec.2009.08.003.
5
The diagnosis and treatment of pseudoprogression, radiation necrosis and brain tumor recurrence.
Int J Mol Sci. 2014 Jul 3;15(7):11832-46. doi: 10.3390/ijms150711832.
9
Differentiating Radiation-Induced Necrosis from Recurrent Brain Tumor Using MR Perfusion and Spectroscopy: A Meta-Analysis.
PLoS One. 2016 Jan 7;11(1):e0141438. doi: 10.1371/journal.pone.0141438. eCollection 2016.

引用本文的文献

2
Enhanced glioma semantic segmentation using U-net and pre-trained backbone U-net architectures.
Sci Rep. 2025 Aug 29;15(1):31821. doi: 10.1038/s41598-025-17895-1.
3
The role of FET-PET in patient selection and response assessment for reirradiation in recurrent glioblastoma.
Front Oncol. 2025 Aug 7;15:1604448. doi: 10.3389/fonc.2025.1604448. eCollection 2025.
7
Development and validation of a deep learning algorithm for discriminating glioma recurrence from radiation necrosis on MRI.
Front Oncol. 2025 Jun 6;15:1573700. doi: 10.3389/fonc.2025.1573700. eCollection 2025.
8
Emerging Trends in Artificial Intelligence in Neuro-Oncology.
Curr Oncol Rep. 2025 Jun 12. doi: 10.1007/s11912-025-01688-w.
9
Enantiomeric Excess Bupivacaine in a Lavender Oil NLC Tested in a Melanoma Model: Prolonged Release and Anticancer Effect.
Mol Pharm. 2025 Jun 2;22(6):3351-3365. doi: 10.1021/acs.molpharmaceut.5c00254. Epub 2025 May 1.
10
Diagnostic and prognostic potential of cell-free RNAs in cerebrospinal fluid and plasma for brain tumors.
NPJ Precis Oncol. 2025 Apr 29;9(1):123. doi: 10.1038/s41698-025-00909-6.

本文引用的文献

5
Distinguishing recurrent high-grade gliomas from radiation injury: a pilot study using dynamic contrast-enhanced MR imaging.
Acad Radiol. 2011 May;18(5):575-83. doi: 10.1016/j.acra.2011.01.018. Epub 2011 Mar 21.
6
The role of MRS in the differentiation of benign and malignant soft tissue and bone tumors.
Eur J Radiol. 2011 Aug;79(2):e33-7. doi: 10.1016/j.ejrad.2010.12.089. Epub 2011 Mar 3.
8
Discrimination between metastasis and glioblastoma multiforme based on morphometric analysis of MR images.
AJNR Am J Neuroradiol. 2011 Jan;32(1):67-73. doi: 10.3174/ajnr.A2269. Epub 2010 Nov 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验