Suppr超能文献

行为的进化优化与神经网络模型

Evolutionary optimization and neural network models of behavior.

作者信息

Mangel M

机构信息

Zoology Department, University of California, Davis 95616.

出版信息

J Math Biol. 1990;28(3):237-56. doi: 10.1007/BF00178775.

Abstract

One of the main challenges to the adaptionist program in general and the use of optimization models in behavioral and evolutionary ecology, in particular, is that organisms are so constrained by ontogeny and phylogeny that they may not be able to attain optimal solutions, however those are defined. This paper responds to the challenge through the comparison of optimality and neural network models for the behavior of an individual polychaete worm. The evolutionary optimization model is used to compute behaviors (movement in and out of a tube) that maximize a measure of Darwinian fitness based on individual survival and reproduction. The neural network involves motor, sensory, energetic reserve and clock neuronal groups. Ontogeny of the neural network is the change of connections of a single individual in response to its experiences in the environment. Evolution of the neural network is the natural selection of initial values of connections between groups and learning rules for changing connections. Taken together, these can be viewed as "design parameters". The best neural networks have fitnesses between 85% and 99% of the fitness of the evolutionary optimization model. More complicated models for polychaete worms are discussed. Formulation of a neural network model for host acceptance decisions by tephritid fruit flies leads to predictions about the neurobiology of the flies. The general conclusion is that neural networks appear to be sufficiently rich and plastic that even weak evolution of design parameters may be sufficient for organisms to achieve behaviors that give fitnesses close to the evolutionary optimal fitness, particularly if the behaviors are relatively simple.

摘要

总体而言,适应主义纲领面临的主要挑战之一,尤其是在行为生态学和进化生态学中运用优化模型时所面临的挑战,在于生物体受到个体发育和系统发育的极大限制,以至于它们可能无法达到最优解,无论最优解是如何定义的。本文通过比较多毛类蠕虫个体行为的最优性模型和神经网络模型来回应这一挑战。进化优化模型用于计算行为(进出管子的运动),这些行为基于个体生存和繁殖最大化达尔文适应性的一种度量。神经网络涉及运动、感觉、能量储备和时钟神经元组。神经网络的个体发育是单个个体的连接根据其在环境中的经历而发生的变化。神经网络的进化是神经元组之间连接初始值的自然选择以及连接变化的学习规则。综合起来,这些可被视为“设计参数”。最佳神经网络的适应性在进化优化模型适应性的85%至99%之间。文中还讨论了更复杂的多毛类蠕虫模型。针对实蝇寄主接受决策构建神经网络模型可得出关于实蝇神经生物学的预测。总的结论是,神经网络似乎足够丰富且具有可塑性,以至于即使设计参数的微弱进化可能就足以使生物体实现接近进化最优适应性的行为,特别是当行为相对简单时。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验