Suppr超能文献

通过选择来学习时间序列的神经网络。

Neural networks that learn temporal sequences by selection.

作者信息

Dehaene S, Changeux J P, Nadal J P

出版信息

Proc Natl Acad Sci U S A. 1987 May;84(9):2727-31. doi: 10.1073/pnas.84.9.2727.

Abstract

A model for formal neural networks that learn temporal sequences by selection is proposed on the basis of observations on the acquisition of song by birds, on sequence-detecting neurons, and on allosteric receptors. The model relies on hypothetical elementary devices made up of three neurons, the synaptic triads, which yield short-term modification of synaptic efficacy through heterosynaptic interactions, and on a local Hebbian learning rule. The functional units postulated are mutually inhibiting clusters of synergic neurons and bundles of synapses. Networks formalized on this basis display capacities for passive recognition and for production of temporal sequences that may include repetitions. Introduction of the learning rule leads to the differentiation of sequence-detecting neurons and to the stabilization of ongoing temporal sequences. A network architecture composed of three layers of neuronal clusters is shown to exhibit active recognition and learning of time sequences by selection: the network spontaneously produces prerepresentations that are selected according to their resonance with the input percepts. Predictions of the model are discussed.

摘要

基于对鸟类歌声习得、序列检测神经元和变构受体的观察,提出了一种通过选择来学习时间序列的形式神经网络模型。该模型依赖于由三个神经元组成的假设基本装置,即突触三联体,它通过异突触相互作用产生突触效能的短期修饰,以及局部赫布学习规则。假定的功能单元是协同神经元和突触束的相互抑制簇。在此基础上形式化的网络具有被动识别和产生可能包括重复的时间序列的能力。学习规则的引入导致序列检测神经元的分化和正在进行的时间序列的稳定。由三层神经元簇组成的网络架构被证明通过选择表现出对时间序列的主动识别和学习:网络自发地产生根据与输入感知的共振而被选择的预表征。讨论了该模型的预测。

相似文献

1
Neural networks that learn temporal sequences by selection.通过选择来学习时间序列的神经网络。
Proc Natl Acad Sci U S A. 1987 May;84(9):2727-31. doi: 10.1073/pnas.84.9.2727.
4
Synaptic dynamics: linear model and adaptation algorithm.突触动力学:线性模型与自适应算法。
Neural Netw. 2014 Aug;56:49-68. doi: 10.1016/j.neunet.2014.04.001. Epub 2014 Apr 28.

引用本文的文献

2
Measuring context dependency in birdsong using artificial neural networks.使用人工神经网络测量鸟鸣中的语境依赖性。
PLoS Comput Biol. 2021 Dec 28;17(12):e1009707. doi: 10.1371/journal.pcbi.1009707. eCollection 2021 Dec.
8
A computational model for preplay in the hippocampus.海马体预演的计算模型。
Front Comput Neurosci. 2013 Nov 12;7:161. doi: 10.3389/fncom.2013.00161. eCollection 2013.

本文引用的文献

1
The temporal structure of spoken language understanding.口语理解的时间结构。
Cognition. 1980 Mar;8(1):1-71. doi: 10.1016/0010-0277(80)90015-3.
10
A model of associative memory in the brain.大脑中的联想记忆模型。
Kybernetik. 1973 Feb;12(2):58-63. doi: 10.1007/BF00272461.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验