Department of Pediatrics, Division of Neonatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
Am J Respir Crit Care Med. 2013 Feb 15;187(4):424-32. doi: 10.1164/rccm.201207-1294OC. Epub 2013 Jan 17.
The role of reactive oxygen species (ROS) signaling in the O(2) sensing mechanism underlying acute hypoxic pulmonary vasoconstriction (HPV) has been controversial. Although mitochondria are important sources of ROS, studies using chemical inhibitors have yielded conflicting results, whereas cellular models using genetic suppression have precluded in vivo confirmation. Hence, genetic animal models are required to test mechanistic hypotheses.
We tested whether mitochondrial Complex III is required for the ROS signaling and vasoconstriction responses to acute hypoxia in pulmonary arteries (PA).
A mouse permitting Cre-mediated conditional deletion of the Rieske iron-sulfur protein (RISP) of Complex III was generated. Adenoviral Cre recombinase was used to delete RISP from isolated PA vessels or smooth muscle cells (PASMC).
In PASMC, RISP depletion abolished hypoxia-induced increases in ROS signaling in the mitochondrial intermembrane space and cytosol, and it abrogated hypoxia-induced increases in Ca(2+). In isolated PA vessels, RISP depletion abolished hypoxia-induced ROS signaling in the cytosol. Breeding the RISP mice with transgenic mice expressing tamoxifen-activated Cre in smooth muscle permitted the depletion of RISP in PASMC in vivo. Precision-cut lung slices from those mice revealed that RISP depletion abolished hypoxia-induced increases in Ca(2+) of the PA. In vivo RISP depletion in smooth muscle attenuated the acute hypoxia-induced increase in right ventricular systolic pressure in anesthetized mice.
Acute hypoxia induces superoxide release from Complex III of smooth muscle cells. These oxidant signals diffuse into the cytosol and trigger increases in Ca(2+) that cause acute hypoxic pulmonary vasoconstriction.
活性氧(ROS)信号在急性低氧性肺血管收缩(HPV)的 O(2)感应机制中的作用一直存在争议。虽然线粒体是 ROS 的重要来源,但使用化学抑制剂的研究得出了相互矛盾的结果,而使用基因抑制的细胞模型则排除了体内的确认。因此,需要遗传动物模型来测试机制假说。
我们测试了线粒体复合物 III 是否是肺动脉(PA)急性低氧时 ROS 信号和血管收缩反应所必需的。
生成了一种允许 Cre 介导的复合物 III 中 Rieske 铁硫蛋白(RISP)条件性缺失的小鼠。腺病毒 Cre 重组酶用于从分离的 PA 血管或平滑肌细胞(PASMC)中删除 RISP。
在 PASMC 中,RISP 耗竭消除了缺氧诱导的线粒体间空间和细胞质中 ROS 信号的增加,并消除了缺氧诱导的 Ca(2+)的增加。在分离的 PA 血管中,RISP 耗竭消除了细胞质中缺氧诱导的 ROS 信号。将 RISP 小鼠与在平滑肌中表达他莫昔芬激活 Cre 的转基因小鼠杂交,允许在体内耗竭 PASMC 中的 RISP。来自这些小鼠的精密切割肺切片显示,RISP 耗竭消除了缺氧引起的 PA 中 Ca(2+)的增加。在麻醉小鼠中,体内 RISP 耗竭可减轻急性低氧引起的右心室收缩压升高。
急性低氧诱导来自平滑肌细胞复合物 III 的超氧化物释放。这些氧化剂信号扩散到细胞质中,并引发 Ca(2+)的增加,导致急性低氧性肺血管收缩。