Suppr超能文献

大鼠初级视皮层中尼氏染色神经元胞体的图像分析:具有细胞核和核仁的神经元轮廓的自动检测与分割

Image analysis of Nissl-stained neuronal perikarya in the primary visual cortex of the rat: automatic detection and segmentation of neuronal profiles with nuclei and nucleoli.

作者信息

Ahrens P, Schleicher A, Zilles K, Werner L

机构信息

Anatomical Institute, University of Cologne, F.R.G.

出版信息

J Microsc. 1990 Mar;157(Pt 3):349-65. doi: 10.1111/j.1365-2818.1990.tb02970.x.

Abstract

An image analysing procedure for the morphometric characterization of cortical neurons in Nissl-stained brain sections is described. It consists of the automatic detection of cellular profiles and their compartments: cytoplasm, nucleus and nucleolus. The algorithm was designed to cope with the large morphological spectrum of cortical perikarya (e.g. geometrical properties of perikarya, staining intensities of cell compartments and nucleo-plasmic area-ratio) including pyramidal (Golgi-category I) and non-pyramidal (Golgi-category II) neurons. Clusters of cells were separated and non-neuronal structures (e.g. glia, endothelial cells) as well as tangential, non-nucleolated sections through neuronal perikarya recognized and excluded from further analysis without requiring interactive procedures. The performance of the profile recognition procedure was evaluated using 426 nucleolated and non-nucleolated profiles of different types of neurons in the primary visual cortex of the rat. Nucleolated profiles were recognized as such with a 91% accuracy, non-nucleolated profiles were rejected correctly in 90% of cases. After automatic segmentation and selection of nucleolated neuronal profiles from the microscopic field, a large set of quantitative morphological features including geometrical, densitometrical and textural parameters can be measured using high power light microscopy. This permits quantitative morphometric characterization of different neuronal types. This procedure is the first part of a system for the automatic classification of Nissl-stained cortical neurons.

摘要

本文描述了一种用于尼氏染色脑切片中皮质神经元形态计量学特征分析的图像分析程序。它包括细胞轮廓及其组成部分(细胞质、细胞核和核仁)的自动检测。该算法旨在应对皮质神经元胞体的广泛形态谱(例如胞体的几何特性、细胞组成部分的染色强度和核质面积比),包括锥体神经元(高尔基I型)和非锥体神经元(高尔基II型)。细胞簇被分离,非神经元结构(如胶质细胞、内皮细胞)以及穿过神经元胞体的切线状、无核仁切片被识别并排除在进一步分析之外,无需交互式操作。使用大鼠初级视觉皮层中不同类型神经元的426个有核仁和无核仁轮廓对轮廓识别程序的性能进行了评估。有核仁轮廓的识别准确率为91%,无核仁轮廓在90%的情况下被正确拒绝。在从显微镜视野中自动分割并选择有核仁的神经元轮廓后,可以使用高倍光学显微镜测量大量包括几何、密度和纹理参数在内的定量形态学特征。这允许对不同神经元类型进行定量形态计量学特征分析。该程序是尼氏染色皮质神经元自动分类系统的第一部分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验