Department of Botany, Banaras Hindu University, Varanasi 221 005, India.
Department of Botany, Indira Gandhi National Tribal University, Amarkantak, (M.P.) 484886, India.
Microbiology (Reading). 2013 Mar;159(Pt 3):641-648. doi: 10.1099/mic.0.065078-0. Epub 2013 Jan 17.
Glycine betaine (GB) is an important osmolyte synthesized in response to different abiotic stresses, including salinity. The two known pathways of GB synthesis involve: 1) two step oxidation of choline (choline → betaine aldehyde → GB), generally found in plants, microbes and animals; and 2) three step methylation of glycine (glycine → sarcosine → dimethylglycine → GB), mainly found in halophilic archaea, sulphur bacteria and the cyanobacterium Aphanothece (Ap.) halophytica. Here, we transformed a salt-sensitive freshwater diazotrophic filamentous cyanobacterium Anabaena (An.) doliolum with N-methyltransferase genes (ApGSMT-DMT) from Ap. halophytica using the triparental conjugation method. The transformed An. doliolum synthesized and accumulated GB in cells, and showed increased salt tolerance and protection to nitrogenase activity. The salt responsiveness of the transformant was also apparent as GB synthesis increased with increasing concentrations of NaCl in the nutrient solution, and maximal [12.92 µmol (g dry weight)(-1)] in cells growing at 0.5 M NaCl. Therefore, the transformed cyanobacterium has changed its behaviour from preferring freshwater to halophily. This study may have important biotechnological implications for the development of stress tolerant nitrogen-fixing cyanobacteria as biofertilizers for sustainable agriculture.
甘氨酸甜菜碱(GB)是一种重要的渗透调节剂,可响应不同的非生物胁迫而合成,包括盐胁迫。GB 的两种已知合成途径包括:1)胆碱的两步氧化(胆碱→甜菜醛→GB),通常存在于植物、微生物和动物中;和 2)甘氨酸的三步甲基化(甘氨酸→肌氨酸→二甲基甘氨酸→GB),主要存在于嗜盐古菌、硫细菌和蓝藻 Aphanothece(Ap.)halophytica 中。在这里,我们使用三亲交配法将来自 Ap. halophytica 的 N-甲基转移酶基因(ApGSMT-DMT)转化为对盐敏感的淡水固氮丝状蓝藻 Anabaena(An.)doliolum。转化的 An. doliolum 在细胞中合成和积累 GB,并表现出增强的耐盐性和对固氮酶活性的保护作用。转化体的盐响应性也很明显,因为随着营养液中 NaCl 浓度的增加,GB 合成增加,在 0.5 M NaCl 下生长的细胞中达到最大值[12.92 µmol(g 干重)(-1)]。因此,转化后的蓝藻已经改变了其从偏爱淡水到嗜盐的行为。这项研究可能对开发耐胁迫固氮蓝藻作为可持续农业的生物肥料具有重要的生物技术意义。