Suppr超能文献

表达来自嗜盐产甲烷古菌渗透剂甘氨酸甜菜碱合成酶的转基因拟南芥促进对干旱和盐胁迫的耐受性。

Transgenic Arabidopsis expressing osmolyte glycine betaine synthesizing enzymes from halophilic methanogen promote tolerance to drought and salt stress.

机构信息

Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan.

出版信息

Plant Mol Biol. 2014 Jul;85(4-5):429-41. doi: 10.1007/s11103-014-0195-8. Epub 2014 May 7.

Abstract

Glycine betaine (betaine) has the highest cellular osmoprotective efficiency which does not accumulate in most glycophytes. The biosynthetic pathway for betaine in higher plants is derived from the oxidation of low-accumulating metabolite choline that limiting the ability of most plants to produce betaine. Halophilic methanoarchaeon Methanohalophilus portucalensis FDF1(T) is a model anaerobic methanogen to study the acclimation of water-deficit stresses which de novo synthesize betaine by the stepwise methylation of glycine, catalyzed by glycine sarcosine N-methyltransferase (GSMT) and sarcosine dimethylglycine N-methyltransferase. In this report, genes encoding these betaine biosynthesizing enzymes, Mpgsmt and Mpsdmt, were introduced into Arabidopsis. The homozygous Mpgsmt (G), Mpsdmt (S), and their cross, Mpgsmt and Mpsdmt (G × S) plants showed increased accumulation of betaine. Water loss from detached leaves was slower in G, S, and G × S lines than wild-type (WT). Pot-grown transgenic plants showed better growth than WT after 9 days of withholding water or irrigating with 300 mM NaCl. G, S, G × S lines also maintained higher relative water content and photosystem II activity than WT under salt stress. This suggests heterologously expressed Mpgsmt and Mpsdmt could enhance tolerance to drought and salt stress in Arabidopsis. We also found a twofold increase in quaternary ammonium compounds in salt-stressed leaves of G lines, presumably due to the activation of GSMT activity by high salinity. This study demonstrates that introducing stress-activated enzymes is a way of avoiding the divergence of primary metabolites under normal growing conditions, while also providing protection in stressful environments.

摘要

甘氨酸甜菜碱(甜菜碱)具有最高的细胞渗透保护效率,且不会在大多数嗜盐植物中积累。高等植物中甜菜碱的生物合成途径源自低积累代谢物胆碱的氧化,这限制了大多数植物产生甜菜碱的能力。嗜盐古菌 Methanohalophilus portucalensis FDF1(T) 是一种研究水分胁迫适应的模式厌氧甲烷菌,它通过甘氨酸的逐步甲基化从头合成甜菜碱,由甘氨酸肌氨酸 N-甲基转移酶(GSMT)和肌氨酸二甲甘氨酸 N-甲基转移酶催化。在本报告中,将编码这些甜菜碱生物合成酶的基因,Mpgsmt 和 Mpsdmt,导入拟南芥中。纯合的 Mpgsmt(G)、Mpsdmt(S)及其杂交,Mpgsmt 和 Mpsdmt(G×S)植株表现出甜菜碱积累增加。与野生型(WT)相比,G、S 和 G×S 系的离体叶片失水较慢。在断水或用 300mM NaCl 灌溉 9 天后,盆栽转基因植株的生长优于 WT。在盐胁迫下,G、S 和 G×S 系也比 WT 保持更高的相对含水量和光系统 II 活性。这表明异源表达的 Mpgsmt 和 Mpsdmt 可以增强拟南芥对干旱和盐胁迫的耐受性。我们还发现 G 系盐胁迫叶片中的季铵化合物增加了两倍,推测这是由于高盐激活了 GSMT 活性。这项研究表明,引入应激激活酶是一种在正常生长条件下避免初级代谢物发散的方法,同时在应激环境中提供保护。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验