Zhao Yueqin, Yi Min, Tiwari Ram C
1 Division of Biometrics VII, Office of Biostatistics, MD, USA.
2 Department of Statistics, University of Missouri, Columbia, MO,USA.
Stat Methods Med Res. 2018 Mar;27(3):876-890. doi: 10.1177/0962280216646678. Epub 2016 May 2.
A likelihood ratio test, recently developed for the detection of signals of adverse events for a drug of interest in the FDA Adverse Events Reporting System database, is extended to detect signals of adverse events simultaneously for all the drugs in a drug class. The extended likelihood ratio test methods, based on Poisson model (Ext-LRT) and zero-inflated Poisson model (Ext-ZIP-LRT), are discussed and are analytically shown, like the likelihood ratio test method, to control the type-I error and false discovery rate. Simulation studies are performed to evaluate the performance characteristics of Ext-LRT and Ext-ZIP-LRT. The proposed methods are applied to the Gadolinium drug class in FAERS database. An in-house likelihood ratio test tool, incorporating the Ext-LRT methodology, is being developed in the Food and Drug Administration.
一种最近开发的用于在FDA不良事件报告系统数据库中检测感兴趣药物不良事件信号的似然比检验,被扩展用于同时检测药物类别中所有药物的不良事件信号。讨论了基于泊松模型(Ext-LRT)和零膨胀泊松模型(Ext-ZIP-LRT)的扩展似然比检验方法,并像似然比检验方法一样通过分析表明其能控制I型错误和错误发现率。进行了模拟研究以评估Ext-LRT和Ext-ZIP-LRT的性能特征。所提出的方法应用于FAERS数据库中的钆类药物。美国食品药品监督管理局正在开发一种纳入Ext-LRT方法的内部似然比检验工具。