Dipartimento di Ingegneria Industriale and INFN, Università di Salerno, Fisciano (SA), 84084, Italy.
Phys Life Rev. 2013 Mar;10(1):85-94. doi: 10.1016/j.plrev.2013.01.001. Epub 2013 Jan 9.
We have devised a thermodynamic model of cortical neurodynamics expressed at the classical level by neural networks and at the quantum level by dissipative quantum field theory. Our model is based on features in the spatial images of cortical activity newly revealed by high-density electrode arrays. We have incorporated the mechanism and necessity for so-called dark energy in knowledge retrieval. We have extended the model first using the Carnot cycle to define our measures for energy, entropy and temperature, and then using the Rankine cycle to incorporate criticality and phase transitions. We describe the dynamics of two interactive fields of neural activity that express knowledge, one at high and the other at low energy density, and the two operators that create and annihilate the fields. We postulate that the extremely high density of energy sequestered briefly in cortical activity patterns can account for the vividness, richness of associations, and emotional intensity of memories recalled by stimuli.
我们设计了一个皮质神经动力学的热力学模型,该模型在经典层面上由神经网络表达,在量子层面上由耗散量子场论表达。我们的模型基于高密度电极阵列新揭示的皮质活动的空间图像特征。我们已经将所谓的暗能量的机制和必要性纳入到知识检索中。我们首先使用卡诺循环扩展了模型,以定义我们的能量、熵和温度度量,然后使用朗肯循环纳入临界性和相变。我们描述了表达知识的两个相互作用的神经活动场的动力学,一个场的能量密度高,另一个场的能量密度低,以及创建和湮灭这两个场的两个算子。我们假设,皮质活动模式中短暂隔离的极高密度能量可以解释刺激回忆的记忆的生动性、丰富的联想和强烈的情感。