Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583-0806, USA.
J Nutr Biochem. 2013 Aug;24(8):1446-52. doi: 10.1016/j.jnutbio.2012.12.003. Epub 2013 Jan 20.
Holocarboxylase synthetase (HCS) catalyzes the binding of the vitamin biotin to histones H3 and H4, thereby creating rare histone biotinylation marks in the epigenome. These marks co-localize with K9-methylated histone H3 (H3K9me), an abundant gene repression mark. The abundance of H3K9me marks in transcriptionally competent loci decreases when HCS is knocked down and when cells are depleted of biotin. Here we tested the hypothesis that the creation of H3K9me marks is at least partially explained by physical interactions between HCS and histone-lysine N-methyltransferases. Using a novel in silico protocol, we predicted that HCS-interacting proteins contain a GGGG(K/R)G(I/M)R motif. This motif, with minor variations, is present in the histone-lysine N-methyltransferase EHMT1. Physical interactions between HCS and the N-terminal, ankyrin and SET domains in EHMT1 were confirmed using yeast-two-hybrid assays, limited proteolysis assays and co-immunoprecipitation. The interactions were stronger between HCS and the N-terminus in EHMT1 compared with the ankyrin and SET domains, consistent with the localization of the HCS-binding motif in the EHMT1 N-terminus. HCS has the catalytic activity to biotinylate K161 within the binding motif in EHMT1. Mutation of K161 weakened the physical interaction between EHMT1 and HCS, but it is unknown whether this effect was caused by loss of biotinylation or loss of the motif. Importantly, HCS knockdown decreased the abundance of H3K9me marks in repeats, suggesting that HCS plays a role in creating histone methylation marks in these loci. We conclude that physical interactions between HCS and EHMT1 mediate epigenomic synergies between biotinylation and methylation events.
羟羧化酶合成酶 (HCS) 催化生物素与组蛋白 H3 和 H4 的结合,从而在表观基因组中产生罕见的组蛋白生物素化标记。这些标记与 K9 甲基化组蛋白 H3 (H3K9me) 共定位,H3K9me 是一种丰富的基因抑制标记。当 HCS 被敲低或细胞耗尽生物素时,转录活性位点的 H3K9me 标记丰度降低。在这里,我们测试了这样一种假设,即 H3K9me 标记的产生至少部分是由 HCS 与组蛋白赖氨酸 N-甲基转移酶之间的物理相互作用解释的。使用一种新的计算方法,我们预测 HCS 相互作用蛋白含有 GGGG(K/R)G(I/M)R 基序。该基序存在于组蛋白赖氨酸 N-甲基转移酶 EHMT1 中,存在细微的变化。使用酵母双杂交测定、有限蛋白水解测定和共免疫沉淀证实了 HCS 与 EHMT1 的 N 端、锚蛋白和 SET 结构域之间的物理相互作用。与锚蛋白和 SET 结构域相比,HCS 与 EHMT1 的 N 端之间的相互作用更强,这与 HCS 结合基序在 EHMT1 N 端的定位一致。HCS 具有将生物素酰化到 EHMT1 结合基序中的 K161 上的催化活性。K161 突变削弱了 EHMT1 和 HCS 之间的物理相互作用,但尚不清楚这种影响是由于生物素化丧失还是基序丧失引起的。重要的是,HCS 敲低降低了重复序列中 H3K9me 标记的丰度,这表明 HCS 在这些基因座中发挥了创建组蛋白甲基化标记的作用。我们的结论是,HCS 和 EHMT1 之间的物理相互作用介导了生物素化和甲基化事件之间的表观基因组协同作用。