Suppr超能文献

脂质组学作为一种新兴的预测子宫内膜容受性的工具。

Lipidomics as an emerging tool to predict endometrial receptivity.

机构信息

Fundación Instituto Valenciano de Infertilidad and Instituto Universitario IVI/INCLIVA, Valencia University, Valencia, Spain.

出版信息

Fertil Steril. 2013 Mar 15;99(4):1100-6. doi: 10.1016/j.fertnstert.2012.12.026. Epub 2013 Jan 18.

Abstract

From the first histologic dating methods to the new "-omics" technologies, there has been a lot of effort put into understanding and characterizing receptive endometrium. The development of new diagnostic approaches to using biologic fluids has opened up a new field of investigation in noninvasive endometrial diagnosis techniques. Moreover, improvements in the field of mass spectrometry and nuclear magnetic resonance have made the precise detection of lipids possible; these organic molecules are involved in important functions such as modulating energy reserves, forming structural features, and promoting regulatory functions. Developments in endometrial receptivity diagnosis using lipidomics are discussed in this review paper. In summary, the results currently available indicate that prostaglandins E(2) and F(2α) are particularly abundant during the window of implantation and that they might serve to nurse the blastocyst at the time of embryo implantation; they may also serve as important biomarkers to define the receptive phase of the endometrium. The importance of understanding the mechanisms that influence the production of these individual prostaglandins in the endometrium is clinically relevant because it may shed light on the sequence of events that leads to successful embryo implantation.

摘要

从最早的组织学日期测定方法到新的“组学”技术,人们一直在努力理解和描述接受性子宫内膜。利用生物流体进行新的诊断方法的发展为非侵入性子宫内膜诊断技术开辟了一个新的研究领域。此外,质谱和核磁共振领域的改进使得精确检测脂质成为可能;这些有机分子参与了调节能量储备、形成结构特征和促进调节功能等重要功能。本文综述了利用脂质组学进行子宫内膜容受性诊断的进展。总之,目前的研究结果表明,前列腺素 E(2)和 F(2α)在着床窗口期间特别丰富,它们可能在胚胎着床时为囊胚提供营养;它们也可能作为重要的生物标志物来定义子宫内膜的接受期。了解影响这些单个前列腺素在子宫内膜中产生的机制的重要性在临床上具有重要意义,因为它可能揭示导致胚胎成功着床的一系列事件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验