CSIR-Network Institutes of Solar Energy, CSIR-Central Electrochemical Research Institute, Karaikudi, 630 006, India.
Phys Chem Chem Phys. 2013 Mar 21;15(11):3712-7. doi: 10.1039/c2cp43487c.
A graphene nanosheet-SnO(2) (GNS-SnO(2)) composite is prepared using N-methylpyrrolidone as a solvent to exfoliate graphene from graphite bar with the aid of CTAB by single phase co-precipitation method. The synthesized composites has been characterised physically by powder XRD which confirms the formation of the composite tetragonal SnO(2) crystal system with the low intense broad 002 plane for GNS. The sandwiched morphology of GNS-SnO(2) and the formation of nanosized particles (around 20 nm) have been confirmed by SEM and TEM images. The presence of sp(2) carbon in the GNS is clear by the highly intense G than D band in laser Raman spectroscopy analysis; furthermore, a single chemical shift has been observed at 132.14 ppm from solid-state (13)C NMR analysis. The synthesized composite has been electrochemically characterized using charge-discharge and EIS analysis. The capacity retentions at the end of the first 10 cycles is 57% (100 mA g(-1) rate), the second 10 cycles is 77.83% (200 mA g(-1)), and the final 10 cycles (300 mA g(-1)) is 81.5%. Moreover the impedance analysis clearly explains the low resistance pathway for Li(+) insertion after 30 cycles when compared with the initial cycle. This superior characteristic of GNS-SnO(2) composite suggests that it is a promising candidate for lithium ion battery anode.
采用 N-甲基吡咯烷酮作为溶剂,在 CTAB 的辅助下通过单相共沉淀法从石墨棒中剥离石墨烯,制备了石墨烯纳米片-SnO(2)(GNS-SnO(2))复合材料。通过粉末 XRD 对合成的复合材料进行了物理表征,证实了复合材料具有四方 SnO(2)晶体结构,GNS 的低强度宽 002 面。SEM 和 TEM 图像证实了 GNS-SnO(2)的夹层形态和纳米颗粒(约 20nm)的形成。激光拉曼光谱分析中 sp(2)碳的存在非常明显,G 带比 D 带的强度高;此外,从固态(13)C NMR 分析中观察到一个单一的化学位移在 132.14ppm。采用充放电和 EIS 分析对合成的复合材料进行了电化学表征。在第 10 个循环结束时,容量保持率为 57%(100mA g(-1)速率),第 20 个循环为 77.83%(200mA g(-1)),第 30 个循环(300mA g(-1))为 81.5%。此外,与初始循环相比,阻抗分析在第 30 个循环后清楚地解释了锂离子插入的低电阻途径。GNS-SnO(2)复合材料的这种优异特性表明,它是锂离子电池阳极的有前途的候选材料。