Suppr超能文献

基于特征的图像补丁逼近用于肺组织分类。

Feature-based image patch approximation for lung tissue classification.

机构信息

Biomedical and Multimedia Information Technology Research Group, School of Information Technologies, University of Sydney, Sydney 2006, Australia.

出版信息

IEEE Trans Med Imaging. 2013 Apr;32(4):797-808. doi: 10.1109/TMI.2013.2241448. Epub 2013 Jan 18.

Abstract

In this paper, we propose a new classification method for five categories of lung tissues in high-resolution computed tomography (HRCT) images, with feature-based image patch approximation. We design two new feature descriptors for higher feature descriptiveness, namely the rotation-invariant Gabor-local binary patterns (RGLBP) texture descriptor and multi-coordinate histogram of oriented gradients (MCHOG) gradient descriptor. Together with intensity features, each image patch is then labeled based on its feature approximation from reference image patches. And a new patch-adaptive sparse approximation (PASA) method is designed with the following main components: minimum discrepancy criteria for sparse-based classification, patch-specific adaptation for discriminative approximation, and feature-space weighting for distance computation. The patch-wise labelings are then accumulated as probabilistic estimations for region-level classification. The proposed method is evaluated on a publicly available ILD database, showing encouraging performance improvements over the state-of-the-arts.

摘要

在本文中,我们提出了一种新的分类方法,用于对高分辨率计算机断层扫描(HRCT)图像中的五类肺部组织进行分类,该方法基于基于特征的图像补丁近似。我们设计了两个新的特征描述符,以提高特征描述的能力,即旋转不变的 Gabor 局部二值模式(RGLBP)纹理描述符和多坐标方向梯度直方图(MCHOG)梯度描述符。然后,每个图像补丁都基于其与参考图像补丁的特征近似来进行标记。我们设计了一种新的基于补丁的稀疏近似(PASA)方法,其主要组件包括:基于稀疏的分类的最小差异标准、用于判别近似的补丁特定自适应、以及用于距离计算的特征空间加权。然后,将补丁级别的标记累积为区域级分类的概率估计。在一个公开的ILD 数据库上对所提出的方法进行了评估,结果表明与现有技术相比,性能有了显著的提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验