Suppr超能文献

被子植物的器官进化是由基因序列和表达模式的相关分歧驱动的。

Organ evolution in angiosperms driven by correlated divergences of gene sequences and expression patterns.

机构信息

School of Plant Sciences, University of Arizona, Tucson, Arizona 85721-0036, USA.

出版信息

Plant Cell. 2013 Jan;25(1):71-82. doi: 10.1105/tpc.112.106716. Epub 2013 Jan 22.

Abstract

The evolution of a species involves changes in its genome and its transcriptome. Divergence in expression patterns may be more important than divergence in sequences for determining phenotypic changes, particularly among closely related species. We examined the relationships between organ evolution, sequence evolution, and expression evolution in Arabidopsis thaliana, rice (Oryza sativa), and maize (Zea mays). We found correlated divergence of gene sequences and expression patterns, with distinct divergence rates that depend on the organ types in which a gene is expressed. For instance, genes specifically expressed in reproductive organs (i.e., stamen) evolve more quickly than those specifically expressed in vegetative organs (e.g., root). The different rates in organ evolution may be due to different degrees of functional constraint associated with the different physiological functions of plant organs. Additionally, the evolutionary rate of a gene sequence is correlated with the breadth of its expression in terms of the number of tissues, the number of coregulation modules, and the number of species in which the gene is expressed, as well as the number of genes with which it may interact. This linkage supports the hypothesis that constitutively expressed genes may experience higher levels of functional constraint accumulated from multiple tissues than do tissue-specific genes.

摘要

物种的进化涉及基因组和转录组的变化。表达模式的差异可能比序列的差异对于决定表型变化更为重要,特别是在亲缘关系密切的物种之间。我们研究了拟南芥、水稻和玉米中器官进化、序列进化和表达进化之间的关系。我们发现基因序列和表达模式存在相关的分歧,其分歧速率取决于基因表达的器官类型。例如,专门在生殖器官(如雄蕊)中表达的基因比专门在营养器官(如根)中表达的基因进化得更快。器官进化的不同速率可能是由于与植物器官不同生理功能相关的功能约束程度不同所致。此外,基因序列的进化速率与其在组织数量、共调控模块数量、表达该基因的物种数量以及与其可能相互作用的基因数量等方面的表达广度相关。这种联系支持了这样一种假设,即组成型表达的基因可能比组织特异性基因经历更多的来自多个组织的功能约束积累。

相似文献

1
Organ evolution in angiosperms driven by correlated divergences of gene sequences and expression patterns.
Plant Cell. 2013 Jan;25(1):71-82. doi: 10.1105/tpc.112.106716. Epub 2013 Jan 22.
4
Evolution and divergence of SBP-box genes in land plants.
BMC Genomics. 2015 Oct 14;16:787. doi: 10.1186/s12864-015-1998-y.
5
Combining expression and comparative evolutionary analysis. The COBRA gene family.
Plant Physiol. 2007 Jan;143(1):172-87. doi: 10.1104/pp.106.087262. Epub 2006 Nov 10.
6
Comparative functional genomics analysis of bHLH gene family in rice, maize and wheat.
BMC Plant Biol. 2018 Nov 29;18(1):309. doi: 10.1186/s12870-018-1529-5.
7
BAR expressolog identification: expression profile similarity ranking of homologous genes in plant species.
Plant J. 2012 Sep;71(6):1038-50. doi: 10.1111/j.1365-313X.2012.05055.x. Epub 2012 Jul 12.
8
Phylogenetic and expression analysis of sucrose phosphate synthase isozymes in plants.
J Plant Physiol. 2007 Jul;164(7):923-33. doi: 10.1016/j.jplph.2006.04.014. Epub 2006 Jul 31.
9
Genome-wide analysis of WOX gene family in rice, sorghum, maize, Arabidopsis and poplar.
J Integr Plant Biol. 2010 Nov;52(11):1016-26. doi: 10.1111/j.1744-7909.2010.00982.x.

引用本文的文献

1
Expression divergence of expansin genes drive the heteroblasty in Ceratopteris chingii.
BMC Biol. 2023 Nov 6;21(1):244. doi: 10.1186/s12915-023-01743-7.
2
Evolution of isoform-level gene expression patterns across tissues during lotus species divergence.
Plant J. 2022 Nov;112(3):830-846. doi: 10.1111/tpj.15984. Epub 2022 Oct 11.
3
Evolution of Gene Expression across Species and Specialized Zooids in Siphonophora.
Mol Biol Evol. 2022 Feb 3;39(2). doi: 10.1093/molbev/msac027.
6
Evolution of Alternative Splicing in Eudicots.
Front Plant Sci. 2019 Jun 12;10:707. doi: 10.3389/fpls.2019.00707. eCollection 2019.
8
Plant organ evolution revealed by phylotranscriptomics in Arabidopsis thaliana.
Sci Rep. 2017 Aug 8;7(1):7567. doi: 10.1038/s41598-017-07866-6.
9
Pan-organ transcriptome variation across 21 cancer types.
Oncotarget. 2017 Jan 24;8(4):6809-6818. doi: 10.18632/oncotarget.14303.
10
Illuminating a plant's tissue-specific metabolic diversity using computational metabolomics and information theory.
Proc Natl Acad Sci U S A. 2016 Nov 22;113(47):E7610-E7618. doi: 10.1073/pnas.1610218113. Epub 2016 Nov 7.

本文引用的文献

2
The evolution of gene expression levels in mammalian organs.
Nature. 2011 Oct 19;478(7369):343-8. doi: 10.1038/nature10532.
3
Relaxed selection is a precursor to the evolution of phenotypic plasticity.
Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):15936-41. doi: 10.1073/pnas.1104825108. Epub 2011 Sep 12.
4
Whole-genome sequencing of multiple Arabidopsis thaliana populations.
Nat Genet. 2011 Aug 28;43(10):956-63. doi: 10.1038/ng.911.
5
Sexual selection in plants.
Curr Biol. 2011 Mar 8;21(5):R176-82. doi: 10.1016/j.cub.2010.12.035.
6
Genome-wide atlas of transcription during maize development.
Plant J. 2011 May;66(4):553-63. doi: 10.1111/j.1365-313X.2011.04527.x. Epub 2011 Mar 9.
7
Genome factor and gene pleiotropy hypotheses in protein evolution.
Biol Direct. 2010 May 24;5:37. doi: 10.1186/1745-6150-5-37.
8
Modular analysis of gene expression data with R.
Bioinformatics. 2010 May 15;26(10):1376-7. doi: 10.1093/bioinformatics/btq130. Epub 2010 Apr 5.
9
A dynamic gene expression atlas covering the entire life cycle of rice.
Plant J. 2010 Mar;61(5):752-66. doi: 10.1111/j.1365-313X.2009.04100.x. Epub 2009 Dec 9.
10
Evolutionary rates and centrality in the yeast gene regulatory network.
Genome Biol. 2009;10(4):R35. doi: 10.1186/gb-2009-10-4-r35. Epub 2009 Apr 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验