Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
Proc Natl Acad Sci U S A. 2013 Feb 5;110(6):2099-104. doi: 10.1073/pnas.1219901110. Epub 2013 Jan 22.
Multidrug transporters belonging to the multidrug and toxic compound extrusion (MATE) family expel dissimilar lipophilic and cationic drugs across cell membranes by dissipating a preexisting Na(+) or H(+) gradient. Despite its clinical relevance, the transport mechanism of MATE proteins remains poorly understood, largely owing to a lack of structural information on the substrate-bound transporter. Here we report crystal structures of a Na(+)-coupled MATE transporter NorM from Neisseria gonorrheae in complexes with three distinct translocation substrates (ethidium, rhodamine 6G, and tetraphenylphosphonium), as well as Cs(+) (a Na(+) congener), all captured in extracellular-facing and drug-bound states. The structures revealed a multidrug-binding cavity festooned with four negatively charged amino acids and surprisingly limited hydrophobic moieties, in stark contrast to the general belief that aromatic amino acids play a prominent role in multidrug recognition. Furthermore, we discovered an uncommon cation-π interaction in the Na(+)-binding site located outside the drug-binding cavity and validated the biological relevance of both the substrate- and cation-binding sites by conducting drug resistance and transport assays. Additionally, we uncovered potential rearrangement of at least two transmembrane helices upon Na(+)-induced drug export. Based on our structural and functional analyses, we suggest that Na(+) triggers multidrug extrusion by inducing protein conformational changes rather than by directly competing for the substrate-binding amino acids. This scenario is distinct from the canonical antiport mechanism, in which both substrate and counterion compete for a shared binding site in the transporter. Collectively, our findings provide an important step toward a detailed and mechanistic understanding of multidrug transport.
多药转运蛋白属于多药和毒性化合物外排(MATE)家族,通过耗散预先存在的 Na(+) 或 H(+) 梯度,将不同的亲脂性和阳离子药物排出细胞膜。尽管其具有临床相关性,但 MATE 蛋白的转运机制仍未得到充分理解,这主要是由于缺乏对结合底物的转运蛋白的结构信息。在这里,我们报告了淋病奈瑟菌中 Na(+)-偶联 MATE 转运蛋白 NorM 与三种不同转运底物(吖啶、罗丹明 6G 和四苯膦)以及 Cs(+)(Na(+) 的同系物)复合物的晶体结构,所有这些结构均处于细胞外面向和药物结合状态。这些结构揭示了一个多药物结合腔,上面装饰着四个带负电荷的氨基酸和令人惊讶的有限疏水性基团,这与普遍认为芳香族氨基酸在多药物识别中起主要作用的观点形成鲜明对比。此外,我们在位于药物结合腔之外的 Na(+) 结合位点发现了一种不常见的阳离子-π 相互作用,并通过进行耐药性和转运测定验证了底物和阳离子结合位点的生物学相关性。此外,我们还发现 Na(+) 诱导药物外排时至少有两个跨膜螺旋的潜在重排。基于我们的结构和功能分析,我们提出 Na(+) 通过诱导蛋白构象变化而不是直接与底物结合氨基酸竞争来触发多药物外排。这种情况与经典的反向转运机制不同,在该机制中,底物和反离子都竞争转运蛋白中共享的结合位点。总之,我们的研究结果为深入了解和阐明多药转运机制提供了重要的一步。