Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232.
Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232
Proc Natl Acad Sci U S A. 2018 Jul 3;115(27):E6182-E6190. doi: 10.1073/pnas.1802417115. Epub 2018 Jun 18.
Secondary active transporters belonging to the multidrug and toxic compound extrusion (MATE) family harness the potential energy of electrochemical ion gradients to export a broad spectrum of cytotoxic compounds, thus contributing to multidrug resistance. The current mechanistic understanding of ion-coupled substrate transport has been informed by a limited set of MATE transporter crystal structures from multiple organisms that capture a 12-transmembrane helix topology adopting similar outward-facing conformations. Although these structures mapped conserved residues important for function, the mechanistic role of these residues in shaping the conformational cycle has not been investigated. Here, we use double-electron electron resonance (DEER) spectroscopy to explore ligand-dependent conformational changes of NorM from (NorM-Vc), a MATE transporter proposed to be coupled to both Na and H gradients. Distance measurements between spin labels on the periplasmic side of NorM-Vc identified unique structural intermediates induced by binding of Na, H, or the substrate doxorubicin. The Na- and H-dependent intermediates were associated with distinct conformations of TM1. Site-directed mutagenesis of conserved residues revealed that Na- and H-driven conformational changes are facilitated by a network of polar residues in the N-terminal domain cavity, whereas conserved carboxylates buried in the C-terminal domain are critical for stabilizing the drug-bound state. Interpreted in conjunction with doxorubicin binding of mutant NorM-Vc and cell toxicity assays, these results establish the role of ion-coupled conformational dynamics in the functional cycle and implicate H in the doxorubicin release mechanism.
属于多药和毒性化合物外排(MATE)家族的次级主动转运体利用电化学离子梯度的势能将广泛的细胞毒性化合物排出,从而导致多药耐药。目前对离子偶联底物转运的机制理解是基于来自多种生物体的有限数量的 MATE 转运体晶体结构,这些结构捕捉到了一种 12 次跨膜螺旋拓扑结构,采用类似的外向构象。尽管这些结构映射了对功能很重要的保守残基,但这些残基在塑造构象循环中的作用尚未得到研究。在这里,我们使用双电子电子共振(DEER)光谱技术来研究 NorM 来自 (NorM-Vc)的配体依赖性构象变化,MATE 转运体被提议与 Na 和 H 梯度偶联。NorM-Vc 周质侧的自旋标记之间的距离测量确定了由 Na、H 或底物阿霉素结合诱导的独特结构中间体。Na 和 H 依赖性中间产物与 TM1 的独特构象相关。保守残基的定点突变揭示了 Na 和 H 驱动的构象变化是由 N 端结构域腔中的极性残基网络促进的,而埋藏在 C 端结构域中的保守羧酸盐对于稳定药物结合状态至关重要。结合突变 NorM-Vc 的阿霉素结合和细胞毒性测定的结果,这些结果确立了离子偶联构象动力学在功能循环中的作用,并暗示 H 参与了阿霉素释放机制。